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The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic
biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or
chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural
transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled
behavior, but such tight control has been elusive in engineered systems. To help engineer protein-
protein interactions, we have developed a molecular dynamics simulation framework that simplifies
features of proteins moving by constrained Brownian motion, with the goal of performing long
simulations. The behavior of a simulated protein system is determined by summation of forces that
include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and
binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein
elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a
protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address
whether our framework could generate useful predictions, we simulated the behavior of an engineered
fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers.
The two protein elements remained closely associated, as if constrained by a random walk in three
dimensions of the peptide linker, as opposed to showing a distribution of distances expected if
movement were dominated by Brownian motion of the protein domains only. We also simulated the
behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted F€orster
resonance energy transfer with previous experimental observations, and obtained a good
correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could
simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and
stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound
to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction
proteins. These specific results have implications for the design of targeted fusion proteins and
artificial transcription factors involving fusion of natural domains. More broadly, the simulation
framework described here could be extended to include more detailed system features such as non-
spherical protein shapes and electrostatics, without requiring detailed, computationally expensive
specifications. This framework should be useful in predicting behavior of engineered protein systems
including binding and dissociation reactions. VC 2013 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4810915]

Synthetic biologists frequently take the elements of natu-
ral transcription systems and treat them as abstracted
black boxes in which the protein elements are used as
Nature provides them. Modeling the behavior of such sys-
tems typically considers the cell as a bag of genes with
certain concentrations of DNA, RNA, and protein, and
ignores the complexity of macromolecular movement in
three dimensions. This approach limits the possible types
of engineering; in particular, it is difficult to design novel
three-dimensional protein assemblies that directly and
indirectly regulate transcription itself or other biological
processes. The goal of the present work is to create a tool

that will simulate the movement of synthetic proteins
consisting of natural domains connected via engineered
linkers in order to make predictions about the interac-
tions of the full system and offer insight into the effects of
varying the domain combinations and linker properties.

I. INTRODUCTION

Predictable manipulation of transcriptional networks is a
central goal of synthetic biology. Regulation of transcription
often involves extensive protein-protein interactions, particu-
larly for processes that are central to the well-being of the orga-
nism. For example, in eukaryotes, the decision to transcribe a
given gene often follows from elaborate signal transduction
pathways involving protein modification, protein-protein
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interactions, and movement between cellular compartments,
with positive and negative feedback loops that often result in
an all-or-none response (Figure 1(a)). One aspect in the design
of such pathways is that a gene is usually present in only one
or two copies per cell, so stochasticity of transcription factor
binding is a potential issue unless binding/non-binding state of
the protein is determined by upstream signaling events.

In bacteria, transcriptional regulation that plays a key
role in the physiology of the organism often involves elabo-
rate protein-protein interactions that are spatially and quanti-
tatively tuned to give a desired result. For example, lambda
repressor binds to its operators in a highly cooperative man-
ner that involves three distinct protein-protein interactions so
that an octameric complex can form in the fully repressed
state.1,2 Another striking example is the Kai clock found in
photosynthetic bacteria.3 In this system, the KaiC protein
goes through 24-h cycles of autophosphorylation and de-
phosphorylation, modulated by the KaiA and KaiB proteins.
When these three proteins are placed in a test tube with aden-
osine triphosphate (ATP), the KaiC phosphorylation state
oscillates with a 24-h period until the ATP runs out.4 In the
cell, the phosphorylation state of KaiC determines the tran-
scription pattern of most of the genes in the genome, but this
transcription follows from a simple pathway that reads the
state of KaiC. Similarly, in higher eukaryotes, the key events
in determining transcriptional patterns often take place at the
cell surface and in the cytoplasm, and are essentially decided
by the time a transcription factor enters the nucleus.

Signaling processes and transcription events often
involve movement around flexible junctions within proteins.
For example, lambda repressor consists of distinct N- and
C-termini attached by a semi-flexible segment; in crystal
structures, the N- and C-terminal domains adopt a number of
distinct conformations depending on the oligomerization
state. The extracellular domain of epidermal growth factor

receptor (EGFR) undergoes a major conformational shift
upon ligand binding, rotating its N-terminal 310 amino acids
almost 180!.5,6 Antibodies, which control transcriptional
events such as the antibody-dependent cell-mediated cyto-
toxicity response and apoptotic events that lead to B cell
elimination, contain a flexible hinge that limits the possible
geometries of binding and signal transduction.

At a mathematical level, synthetic biology concerns
itself with a number of phenomena that are amenable to com-
putational investigation and modeling. These include engi-
neering novel enzymatic activities, mechanical activities
(such as transport or force application), compartmentalization
(such as artificial carboxysomes or DNA nanostructures), as-
sembly (such as biopolymer formation and property investi-
gation), and protein interaction networks. (A phosphorylates
B which inactivates C.) Differential equations are commonly
used to model systems that can be characterized by their con-
centrations (for instance, protein interaction networks that are
uniformly distributed in solution). Here, we concern our-
selves with systems where this is not the case. Geometric fac-
tors may play a role in the non-equilibrium dynamics of a
system (for instance, nucleated assembly or diffusion-limited
rates of spread from an initial induction point), particularly
with engineered structures that may violate the presumption
(generally assumed for natural systems) that the system is in
fact functional. Alternatively, the geometric properties of a
system may be clearly important but it may not be obvious
how to design our engineered structure to achieve it (for the
case of DNA nanostructures a tool exists to do this, within
certain constraints). Finally, geometry-driven modeling may
give the synthetic biologist additional features to engineer,
including new interaction surfaces, fusion attachment sites,
linker length and stiffness, weak interactions, etc. In the
course of evolution, Nature routinely varies these parameters
to generate new systems. In contrast, synthetic biologists can

FIG. 1. Synthetic-biological intervention in signal transduction. (a) Mammalian signal transduction generally proceeds by an interaction of a protein ligand
with a cell-surface receptor, leading to phosphorylation events on the cytoplasmic face of the cell surface, leading to changes in protein-protein interactions
that are directly or indirectly transmitted into the nucleus. Protein-protein interactions occurring at the cell surface, in the cytoplasm, in the nucleus, and on the
DNA all represent opportunities for engineering and present common kinetic and thermodynamic problems. (The figure vastly understates the complexity of
most mammalian signal transduction.) (b) “Chimeric activators” are engineered signaling proteins with a logical AND function, requiring the presence of two
arbitrarily chosen receptors to be present on a cell surface. The Targeting Element binds tightly to one receptor but does not generate the signal of interest. The
Activity Element binds to and signals through a second receptor, and contains a mutation (X) that significantly reduces binding. (c) Signaling of the chimeric
activator on a target cell is driven through initial binding of the targeting element, which has a much higher affinity for its receptor than the Activity Element.
After this initial binding, the Activity Element is present in a high local concentration on the cell surface and can bind to its receptor despite the weakening
mutation. (Binding to cells with only the receptor for the Activity Element is minimized due to the mutation.) (d) Spatial considerations in the construction of
a specific chimeric activator. IFNa, which kills cells to which it binds, can be targeted with EGF to cancer cells that overproduce EGF receptor 7. To allow si-
multaneous binding to both receptors, a flexible linker of sufficient length must bridge the domains of the fusion protein. However, the set of conformations
adopted in the free and EGFR-bound states (which will determine binding to IFNa receptor and subsequent signaling) is unknown.
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rationally engineer linear sequences and adjust concentra-
tions of proteins, but do not design new three-dimensional
complexes or systems that change shape over time, in part
because we lack the tools to do so.

One class of engineered signal transduction proteins are
fusion proteins that bind to multiple receptors on a cell sur-
face. In terms of engineering transcriptional circuits, these
proteins are the most distant from DNA, but they embody
some of the same protein engineering problems as, for exam-
ple, engineering transcription factors with hybrid binding
specificities. Such fusion proteins are easily studied because
they can be simply added to cells, and might serve as thera-
peutics if properly engineered. Previously we described a
class of such fusion proteins, termed “chimeric activators,”
which are designed to act as AND-gate elements in a
protein-based logic system;7,8 these proteins activate signal-
ing only on cells with two distinct receptors. Chimeric acti-
vators consist of two protein ligands that are fused by a
flexible linker long enough to allow simultaneous binding to
the cell-surface receptors. Typically one ligand is an
“Activity Element” that signals, and the other ligand binds to
a cell-specific surface protein and provides a targeting func-
tion but does not signal (Figures 1(b) and 1(c)).

In constructing such a protein AND-gate, the fusion pro-
tein must activate signal transduction on a target cell with both
receptors, but it should not activate signal transduction on cells
with only one receptor. Simply adding a targeting element to a
signaling protein will not prevent the protein from binding to
its receptor on non-target cells. Specificity is achieved by
introducing a mutation that significantly weakens the signaling
element; it binds poorly to its receptor in isolation, but if the
fusion protein first binds via its targeting element to the cell
surface, the mutated activity element will be present in a high
local concentration in the neighborhood of its receptor, and
still able to bind. Introduction of the weakening mutation
enhances cell type-specificity about 10–20 fold.7,8 While this
is useful, natural signaling proteins that use distinct targeting
and signaling receptors show a much larger specificity
enhancement. For example, the interleukin-6 (IL-6)-family
cytokines leukemia inhibitory factor (LIF) and ciliary neuro-
trophic factor (CNTF) both signal through a heterodimeric
LIFR and gp130 receptor complex. LIF requires only these
two receptors, while CNTF requires a third, non-signaling re-
ceptor (CNTFR) that serves a targeting function and positions
CNTF to bind to LIFR/gp130, but in the absence of CNTFR,
CNTF binding to LIFR/gp130 is undetectable.9 This observa-
tion illustrates that when the positioning of a ligand on a cell
surface is optimized, subsequent receptor binding can be pro-
foundly improved, and that the spatial aspect of chimeric acti-
vator function has not been addressed. The simulation tools
described here are designed to do this.

The problem of quantitative and spatial optimization is
likely to be important for engineering every aspect of tran-
scriptional regulation. For example, in constructing artificial
DNA-binding proteins to bind to arbitrarily chosen sequen-
ces, it is straightforward to fuse zinc-finger proteins10–12 or
TALE subunits13–17 to match a given DNA target, but bind-
ing to non-target sequences needs to be minimized by quanti-
tative tuning. In addition, actual binding to DNA may involve

bending around the DNA helix, which may require either
flexible attachment points to be introduced into the protein or
use of multiple subunits that non-covalently assemble onto
DNA. The simulation tools we propose here could also be
used for designing novel DNA-binding complexes, or artifi-
cial proteins acting at any other step in signal transduction.

II. THE APPROACH

This work represents initial efforts in creating a general
system for predicting the behavior of flexible, multidomain
proteins as they move by constrained Brownian motion and
bind to target proteins. Such a system may be useful for under-
standing natural proteins, and for designing genetically engi-
neered proteins composed of natural protein domains joined at
flexible junctions. Examples of natural flexible proteins
include antibodies, the phage M13 gene 3 protein that binds to
target cells, and fibronectin as well as signaling proteins that
can exist in multiple conformational states such as EGFR and
Src. Antibodies and gene 3 protein each need to bind in a mul-
tivalent manner to target proteins with unpredictable relative
conformations; hence the need for flexibility.

The design considerations for engineered fusion proteins
with flexible junctions between the domains are poorly under-
stood. For example, if one wishes to direct a signaling protein
to a particular cell type in the body, it is possible to fuse anti-
body V regions that bind to a cell-specific surface protein on
the same cell. A secondary binding event of the signaling pro-
tein to its receptor could result in enhanced signaling relative
to cells lacking the targeting receptor. In principle, this second-
ary binding event could be optimized by choosing the ideal
binding constants of each protein domain for their targets, and
the ideal length and flexibility of the linker connecting these
proteins. These parameters can be readily manipulated by
standard genetic engineering techniques. However, in practice,
it is not currently known how to choose these parameters.

To better understand the movement and binding properties
of flexible proteins, we are developing a simulation approach
that builds on previous work.18–23 Ultimately, we hope to have
a system that simulates the behavior of engineered proteins
with multiple binding surfaces, including Brownian motion,
binding, and dissociation events. In the present work, we focus
on modeling the linker relationship between protein domains
which are subject to Brownian forces, varying linker stiffness
and binding events (on-events).

The movement of proteins takes place in a highly vis-
cous environment. The mathematical approach we took was
to sum the forces acting on each protein element: a distribu-
tion of Brownian force calculated from the distribution of
Brownian motions, a resistive force resulting from move-
ment in a Newtonian fluid, forces resulting from attachment
to other protein elements, attractive forces to lead to binding
to specific surfaces, and a hard-sphere non-inertial repulsive
force to prevent proteins from being driven into each other.
Forces can then be calculated for an engineered protein with
arbitrarily chosen domain sizes, linker lengths and flexibil-
ities, and binding properties. In addition, it should be possi-
ble to run comparison simulations in which these parameters
are varied in a way that corresponds to variant proteins that
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could be made by genetic engineering—for instance, varying
linker properties or binding parameters.

For protein-sized molecules that interact through spe-
cific surfaces, the diffusion-limited on-rate is about
106M"1s"1. On-rates for protein-protein interactions are gen-
erally in this range, but may be somewhat faster or slower
depending on electrostatic charges, the Stokes radius of the
protein, and whether the amino acid side chains in the bind-
ing interface must adopt an unusual conformation before
binding. The off-rates of one protein bound to another may
vary from 109s"1 (unmeasurably fast) to less than 10"7s"1

(i.e., the complex may be stable for several days). In most bi-
ological contexts, when an extremely stable complex forms,
the off-rate is irrelevant and the binding event is terminated
by another process such as proteolysis. In practice, a system
that simulates protein binding interaction on a timescale up
to a few minutes will be adequate for most purposes.

Minute timescales are difficult to reach for macromolecu-
lar systems, however. Molecular dynamics (MD) packages
such as NAMD24 and Anton25 are limited to time steps on the
order of several femtoseconds. All-atom MD simulations
involving massive computational effort can reach the microsec-
ond scale.26 Efforts have been made to extend MD timescales
by coarse grained (CG) representations of macromole-
cules18,19—grouping multiple atoms into units which are simu-
lated together, reducing the number of variables in the system
and potentially alleviating the restrictions on time step size (up
to one to several orders of magnitude larger than all-atom MD).
Both MD and CG approaches are impractical for the time
scales we intend to investigate, offer levels of detail which are
not necessary for decisions about protein engineering strat-
egies, and could provide false precision in our results.

Brownian dynamics (BD) systems23,27 are used for
studying reaction-diffusion systems where interactions occur
on a large time scale relative to the dynamics of the bodies,
and generally represent individual bodies as hard spheres
without an internal structure. Other methods attempting to
reach long time scales for coarsely modeling reaction-
diffusion systems include the Reaction Before Move20 BD
scheme which extends previous BD methods by analytically
determining the probability of two particles colliding in order
to avoid missing collisions during large steps. This is related
to other event-driven BD schemes such as Green’s function
reaction dynamics21,22 which attempt to find the next signifi-
cant interaction in the system and jump forward to it in time.
These methods perform comparatively well for sparse system
where regular BD approaches are forced to take many steps
where no significant interactions occur, but are less advanta-
geous in dense systems where interactions occur frequently.
Our method, described in Secs. III–V, attempts to preserve
some of the advantages of these event-driven BD approaches
while also modeling flexible connections within molecules.

III. CHOICE OF CONSTRAINED NON-INERTIAL
DYNAMICS TO REPRESENT PROTEIN MOVEMENT
AND BINDING

The preceding sections have described what we want to
be able to do and why from a biological perspective. Here,

we address from a mathematical perspective what is neces-
sary to make those goals possible. To model a flexible protein
in solution, we make a number of simplifying assumptions
beyond those entailed by an all-atom molecular dynamics
model. Most significantly we abstract full protein domains as
single rigid spheres, ignoring effects due to differences in
shape or intra-domain motion. We ignore the details of the
solvent, characterizing it only by its viscosity and tempera-
ture. We assume that the correlation time of the velocities of
the bodies in our system is sufficiently small that the dynam-
ics can be well modeled by a constrained non-inertial dynam-
ics integration scheme as described in Sec. IV and that the
effects of temperature can be captured by stochastic
Brownian forces on the bodies. The particle Reynolds num-
ber is Rep ¼ UpDp=!, where Up is a characteristic particle ve-
locity, Dp is the particle diameter, and ! is the kinematic
viscosity of the background fluid. In the problem under con-
sideration, Dp $ 3:6 nm; ! $ 3cP, and Up $ 1 m=s (Ref. 28)
giving Rep $ 10"3 % 1 (note also that Up is the instantane-
ous velocity; the characteristic particle velocity on the time
scale we are examining is much smaller). Hence we neglect
the inertial terms in the particle dynamics.

We abstract binding interactions between protein
domains as constraints within our integration scheme to
avoid the stiff force terms that would otherwise be necessary
to accurately model such interactions, and which would
impose stringent restrictions on the stable integration time
step sizes for the system. Similarly, we model excluded vol-
ume interactions by constraints which become active when
two bodies impinge on one another and become inactive if a
constraint attempts to apply a force that would tend to bring
the bodies closer together (see Sec. V D).

A variety of integration schemes exist for solving partial
differential equations. Broadly there are explicit and implicit
stepping methods. All such methods represent the state at a
given time tn and attempt to find an approximation of the
state at time tnþ1. Explicit stepping methods solve an equa-
tion of the form Xðtnþ1Þ ¼ XðtnÞ þ Fðtn;XðtnÞÞ, evaluating
the next state as a directly computable equation of the cur-
rent state. Implicit stepping methods solve an equation of the
form Xðtnþ1Þ ¼ XðtnÞ þ Fðtnþ1;Xðtnþ1ÞÞ, where the function
evaluated in order to reach the next state uses information
about that state; rather than being directly computable, the
equation expresses a condition which must be satisfied to
some tolerance in order to achieve an admissible approxima-
tion for the next state.

Two advantages of an explicit method are first that the
evaluation of the next state is comparatively much more com-
putationally efficient than an implicit method, allowing many
more steps to be taken, and second that it is often easier to con-
struct energy-conserving explicit integrators. Two disadvan-
tages are that the allowable time step sizes tend to be much
smaller,29 especially for the case of stiff forces (that is, forces
which are much larger than other forces in the system), and
that it is difficult to directly enforce the satisfaction of con-
straints such as excluded volumes (attempts to do so in explicit
integration schemes include penalty methods,30 which, if they
are to be effective, result in stiff forces,31 e.g., Lennard-Jones
potential). Implicit methods have the advantage of allowing
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direct enforcement of constraints as part of the system of equa-
tions to be solved, and of allowing for large integration time
steps. They have the disadvantage of being much more expen-
sive than explicit stepping for a single step, and also in many
cases of dissipating energy. M-SHAKE32 and LINCS33 are
methods developed for fine-scale molecular dynamics which
use Newton’s method and Lagrange multipliers to enforce con-
straints on bond geometry during simulation; they are similar
in concept to the implicit approach which we take in this work.

The choice of integration scheme for a problem is dictated
by which properties of the system are important to capture.
Related to the energy preservation properties of the two
schemes, explicit schemes are capable of correctly modeling
bond vibrations, at the cost of not permitting large time steps,
while implicit schemes damp out high frequency components
(in explicit models of interatomic bonds, time steps are con-
strained largely by bond vibration frequencies; however, even
if these vibrations are damped out nonbonded inter-atom colli-
sions come to dominate on a larger but comparable time
scale34). In our system, we are concerned with domain-scale
phenomena over large time scales (up to the order of seconds
to minutes), and are not interested in bond-level interactions. If
energy conservation is not maintained in an all-atom molecular
dynamics simulation, the effective temperature of the system
will change. However, in our case, temperature is an exoge-
nous parameter governing Brownian forces rather than a meas-
urable property of the system so this is not a concern.
Constraints can be expressed either as stiff penalty functions or
as exact equations; since we require large time steps and would
like exact enforcement of our conditions, we choose the latter.
Use of stiff forces, as opposed to constraints, would require
time steps much smaller than those required by accuracy con-
siderations. Due to these considerations, we chose an implicit
Newton-step integration scheme (Sec. IV).

BD simulations often model binding as a probabilistic
phenomenon.20,35 We take a hybrid approach between that
and the approach similar to Northrup et al.23 where binding
occurs with a base probability which is weighted by the
goodness of fit between complementary sites on a pair of
molecules (Figure 2). The relationship between the proper-
ties of the medium, the geometry and resistance properties of
the bodies, and the magnitude of the target distance governs
the on-rate of the interaction in isolation. Once an interaction
is established, it is maintained via a constraint which requires
that the bound molecules remain in a fixed relative position
and orientation. The constraint has a base off-rate, modulated
by the force that the bond must apply to keep the two bodies
together (see Sec. V F). Experimentally determined on and
off rates are more readily available than measurements of
binding energies, which depend on a combination of hydro-
gen bonding, electrostatic interactions, and shape comple-
mentarity. We can empirically relate our system parameters
to such on and off rates, and hence use them as input parame-
ters to our system when modeling experiment. We choose to
make dissociation based on force rather than purely probabil-
istic in an attempt to integrate the effects of multiple forces
acting on the interacting molecules (e.g., Brownian forces,
steric strain as manifested by peptide linker connecting one
of the binding partners to another domain).

IV. NEWTON INTEGRATION SCHEME

Our system represents proteins as spheres that differ
only in their radii and in their radially defined binding surfa-
ces for other proteins. Peptide linkers are represented as a se-
ries of rigidly connected small spheres that are also rigidly
connected to the large protein-spheres. In practice, all such
spheres are treated by the simulation framework in the same
manner—no distinction is made between proteins and pep-
tide elements.

To advance our system in time, we solve the equations
for non-inertial Newtonian mechanics. Given m elements,
the system satisfies the force balance equation

FðRÞ " fv" @C

@R

T

k ¼ 0; (1)

where F ¼ ðF1;…;FmÞT is a vector of forces, f is the com-
bined rigid resistance matrix36 of the elements (in general, the
rigid resistance matrix includes hydrodynamic coupling across
different molecules; we neglect this), v ¼ ðv1;…; vmÞT is the
vector of element velocities, R ¼ ðR1;…;RmÞT is the state
vector with Ri a 6-vector representing the position and orienta-
tion of element i. The first force term includes non-constraint
forces such as linker stiffness. The second force term accounts
for hydrodynamic drag on the elements. The last force term on
the left hand side represents the forces enforcing the
constraints

CðRÞ ¼ 0; (2)

where C ¼ ðC1;…;ClÞT is the vector of the l active con-
straints on the elements. The constraint force is given by
the Jacobian of the constraint @C

@R and a set of Lagrange
multipliers k ¼ ðki;…; klÞ, the values of which must be
determined as part of the dynamics. In our system, the con-
straint types are for excluded volumes, protein-protein
binding (snapping together), and rigid connections within
linkers.

FIG. 2. Simulation of binding on- and off-events. (a) On-event. For a
ligand-receptor interaction, the binding sites are defined as points on a spher-
ical surface at defined angles (h1; h2) relative to other features, such as the
attachment to a peptide linker or a cell membrane. When the binding sites
approach the ideal binding position and orientation within a threshold dis-
tance d, angle / around the bond vectors, and angle h3 between the two
bond vectors a binding constraint is activated with probability proportional
to the goodness of fit between the paired binding sites. (b) Off-event.
Binding constraints become inactive and release the bond with a base off-
rate modulated by the force F which they experience. In this way, experi-
mental information about on-rates and off-rates can be incorporated into a
simulation as distinct parameters.
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The forces and constraints are nonlinear, and hence we
use Newton’s method to solve Eq. (1) and advance the state
from time tn to time tnþ1. Newton’s method proceeds by lin-
earizing the equations about the current state Rk, solving the
linearized equations for an increment dRk, and updating to
the next state Rkþ1 ¼ Rk þ dRk, until a convergence criteria
is satisfied. In particular, in each iteration of Newton’s
method, we solve the linear system

1

Dt
f" @F

@R

!!!!
Rk

@C

@R

T!!!!
Rk

@C

@R

!!!!
Rk

0

0

BBB@

1

CCCA
dRk

kk

" #
¼ FðRkÞ" f

Rk"Rn

Dt
"CðRkÞ

0

@

1

A:

(3)

This linear system of equations is symmetric, indefinite,
and can be solved with a standard linear solver. We use
PETSc’s implementation of MINRES.37,38 The forces
which play a part in F and C are described in detail in
Sec. V. Note that the drag force depends on the linear
and angular velocities, which are expressed as the total
change in state over the time step in the drag terms of
Eq. (3).

The simulation is initialized by specifying the initial
state of each element. The state is then updated from time tn

to the next time as follows:

1. Determine the time step Dt, and set tnþ1 ¼ tn þ Dt.
2. Update the state Rn to Rnþ1 by solving Eqs. (1) and (2)

using Newton’s method, where in each Newton step we
do the following:

(a) Compute forces and build the linear system in
Eq. (3). If this is the first Newton step, compute and
store Brownian forces (which will not change for
future Newton steps).

(b) Solve the linear system Eq. (3) for dRk and kk.
(c) Apply a fraction of the resulting position deltas to the

bodies in the system (Rkþ1 ¼ Rk þ adRk).
(d) Deactivate any constraints that satisfy deactivation

criteria and activate constraints that satisfy activation
criteria (Sec. V).

V. FORCE TYPES

For each type of force in the system, we consider the fol-
lowing: activation/deactivation criteria, linearization for the
Newton solve, and the effect on the maximum allowable
time step.

At present, our system includes six forces: (1) Brownian
forces; (2) drag forces; (3) bending forces; (4) excluded
volume constraints; (5) relative position constraints defining
distances within multidomain proteins; and (6) binding
constraints to simulate binding interactions.

A. Brownian forces

Brownian forces as we model them have no position de-
pendence, so they contribute only to the right hand side of
the linear system.

For a given spherical element with radius r, the
Brownian forces FB and torques sB acting on it are calculated
by sampling from a Gaussian distribution with statistics

hFBðtÞi ¼ 0;

hFBðtÞ ) FBðtþ DtÞi ¼ 2kTftdðDtÞ $ 2kBTft

Dt
;

hsBðtÞi ¼ 0;

hsBðtÞ ) sBðtþ DtÞi ¼ 2kTfrdðDtÞ $ 2kBTfr

Dt
;

where kB is Boltzmann’s constant, T is the absolute tempera-
ture, d is the Dirac delta function, and ft ¼ 6plr; fr ¼ 8plr3

the translational and rotational drag coefficients, respectively.

B. Drag forces

Each body experience a hydrodynamic drag force acting
against its motion, given by

FD ¼ "ftV;
sD ¼ "frX;

where V and X are the linear and angular velocities of the
body, respectively. For a general body, the resistance matrix
f depends on its shape and may couple the 6 degrees of free-
dom of velocity. For the case of a sphere, the resistance ma-
trix is diagonal. Note also that a more accurate treatment of
hydrodynamic drag includes the effects of other bodies in
the system. Figure 2 in Parmar et al.39 suggests that inter-
protein hydrodynamic interactions may have as much as a
1.5-fold effect on diffusivity across a wide range of concen-
trations; however, it is not clear how this would manifest in
the behavior of individual molecules in close proximity. The
effect of shape on protein hydrodynamics is related to the
deviation of the protein shape from spherical; this is some-
what challenging, but will need to be addressed in the future.
When only Brownian forces and drag forces are present, the
displacement statistics of the system are analytically those of
Brownian motion.

C. Bending forces

In order to model variable linker stiffness, we impose a
bending spring force on the nodes in the linker. This takes
the form of a Hookean spring force acting between the center
of each such node and the node two steps down the linker
from it (i.e., nodes in and inþ2) with rest length equal to the
maximum allowed distance between those nodes d (see
Figure 6(b)). This has the form:

Fbend ¼ "kðjjxn " xnþ2jj" dÞ ðxn " xnþ2Þ
jjxn " xnþ2jj

;

where k is the spring constant.

D. Excluded volume constraints

The excluded volume constraints enforce the condition
that there is no overlap between two bodies. We add a
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constraint Ci with a corresponding Lagrange multiplier ki

which enforces that the two bodies must have exactly zero
overlap as measured in the direction between the body cen-
ters before the solve, i.e.,

CiðR1;R2Þ ¼ jjX1 " X2jj" ðr1 þ r2Þ ¼ 0;

where Xi is the position of element i and ri is its radius. Note
that this can (temporarily) have the effect of pulling two
bodies together.

In each iteration, we first apply the deactivation criteria,
and then apply activation criteria. An excluded volume con-
straint is deactivated if it applied forces that brought the two
bodies closer together in the previous Newton iteration. If two
bodies intersect by more than a small threshold value (deter-
mined by comparing their proximity to the sum of their radii),
the excluded volume constraint is activated. A tiny intersection
is allowed to avoid spurious sticking effects due to numerical
error. Note that if a constraint was on in the previous step and
applied only forces that would tend to separate the bodies, we
leave it on even if the bodies no longer intersect.

E. Relative position constraints

Relative position constraints require that points embed-
ded within two bodies remain a fixed distance from one
another. These constraints are used to model both rigid link-
ers between bodies (by directly constraining embedded
points on the bodies) and flexible linkers (by enforcing rigid
relative position constraints among the bodies and a chain of
small linker bodies which form the linker, see Figure 3).

We add a constraint Ci and Lagrange multiplier ki that
attempts to force the embedded points to be at the desired
relative position, i.e.,

CiðR1;R2Þ ¼ jjx1 " x2jj" d ¼ 0;

where xi ¼ Xi þ Riri is the embedded position of point i in
terms of the position Xi and rotation Ri of body i, and d is
the desired distance between x1 and x2.

F. Binding constraints

Binding constraints model pairwise binding interactions
between protein domains. We add a constraint Ci and

Lagrange multiplier ki that attempts to force the binding sites
to be equal, i.e.,

CiðR1;R2Þ ¼ x1 " x2 ¼ 0;

where xi ¼ Xi þ Riri is the embedded position of binding
site i in body i as explained above.

To update the active set of binding constraints, we first
check activation criteria and then deactivation criteria. If the
constraint is not currently on, we calculate the binding prob-
ability density according to

pbðR1;R2Þ ¼ eðjh3j; hmax
3 Þeðj/j;/

maxÞeðd; dmaxÞkon;

where h3 captures how close the binding sites in the Activity
Element and in the receptor are to aligned, / captures the
rotational error around the binding site, d captures the
distance error between the sites, and kon is the base on-rate
(see Figure 2(a)). The error function eða; amaxÞ is defined as

eða; amaxÞ ¼ a * amax : 1" a

amax

" #2

a > amax : 0:

8
><

>:

We then sample from the exponential distribution 1" e"pbDt

to determine whether to activate the binding constraint. In
order to check for constraint deactivation, we take the
impulse an active binding force applied over the last time
step and project out any component that tends to push the
paired bodies apart. We compute a dissociation probability
density

pdðR1;R2;FÞ ¼ eðF=F0Þkof f ;

where F0 is a force scaling for this bond and koff is the base
dissociation rate. We sample from the exponential distribu-
tion 1" e"pdðR1;R2;FÞDt to determine whether to deactivate the
constraint.

G. Effect on time step size

One problem for long simulations is that much computa-
tional time can be wasted on short time steps when the relevant
elements are far apart and the system does not qualitatively
change very much. To address this, we use variable-length
time steps, based heuristically on the proximity of proteins that
could interact with one another. Specifically, the desired length
of each time step is calculated for each pair of reasonably close
bodies. The time step is chosen as the time in which the bodies
would be expected to close two-thirds of the distance between
them under the action of Brownian forces if they move directly
towards one another.

H. Techniques for solving the nonlinear system

We use several tricks to accelerate the solution of our
system: limiting the size of a Newton step both by a factor
which depends on the quality of the step and by the overall
size of the step, and preconditioning the linear system. We
apply a scale factor a to the calculated step size dRk such

FIG. 3. A flexible linker is created by defining a set of small spherical bodies
between domains it links. Each body on a linker segment has a point embed-
ded within it which is constrained to remain a fixed distance from its coun-
terpart on the other body.
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that Rkþ1 ¼ Rk þ adRk, where a is initially set at 0.25 and is
bounded between 0.1 and 0.75. We examine the norm of the
nonlinear residual after each Newton step; if it has improved
by a factor of more than 0:75a (indicating that our linear step
guess is good) we increase a; if the residual has improved by
less than 0:3a we reduce a; and otherwise we leave a con-
stant. We place a second limitation on the step scaling to
ensure that no object point moves more than 0.5 nm in a sin-
gle Newton step, in order to prevent poor linearizations from
destabilizing the simulation. We do this by computing the
maximum displacement dRk

max of any linear component of

dRk or any angular component weighted by the associated
radius, and clamp a by 0:5=dRk

max for this step only.
The computational expense of solving a linear system is

directly related to the condition number of that system.
Preconditioning the linear system reduces the condition
number by making the matrix look closer to an identity ma-
trix; it requires being able to cheaply compute an approxi-
mate inverse to the original system. We use M ¼ 1

Dt f as our
preconditioner; it is block diagonal, cheap to invert, and con-
stant through the simulation up to a factor of Dt and thus
only need be inverted once. Instead of Eq. (3) we solve

dRk
M ¼M1=2dRk

I"M"1=2 @F

@R

!!!!
Rk

M"1=2 M"1=2@C

@R

T!!!!
Rk

@C

@R

!!!!
Rk

M"1=2 0

0

BBBB@

1

CCCCA
dRk

M

kk

 !

¼ M1=2 FðRkÞ " f
Rk " Rn

Dt

" #

"CðRkÞ

0

B@

1

CA:

After we solve this system, we recover dRk from dRk
M as

dRk ¼M"1=2dRk
M. In a typical case, this preconditioning

improved the condition number of the system by three orders
of magnitude.

VI. RESULTS

A. Flexible linker

One purpose of the simulation system described above is
to predict the behavior of artificial biological constructions.
To address whether the simulation system would generate
plausible behavior, and to gain insight into an engineered
construction with an eye towards further improvement, we
simulated the behavior of a representative targeted fusion
protein. The engineered protein consisted of two proteins of
molecular weight 20 kD connected by a 35-amino acid
glycine-serine linker. The proteins were modeled as spheres
of 36 Å diameter (the typical size of a small globular pro-
tein23), and the linker was modeled as 10 equally spaced rigid
segments of total length of 105 Å, joined by 9 nodes of diam-
eter 4 Å (Figure 4(b)). Complete flexibility around the nodes
was allowed; this corresponds to a persistence length of about
3 amino acids for the linker. The temperature was set to
310.2 K and the dynamic viscosity was 3.5 cP, corresponding
to blood plasma.40 The simulation was run for 500 000 steps,
corresponding to a total duration of 250 ls.

Simulation of the behavior of the linker-tethered fusion
protein gives the somewhat surprising result that the large
protein domains generally remain quite close, on average
closer than the attachment points of the linker connecting the
two proteins. Figure 4(b) shows the distribution of distances
between the linker attachment points on the surface of the
proteins. The modal distance, about 4.25 nm, is slightly
larger than that predicted by a random walk of 10 steps,
10:5 Å per step (3.32 nm). However, the average separation

between the protein surfaces is 1.60 nm, with a correspond-
ing average distance between the centers of 4.20 nm.

Inspection of the simulation video45 suggests possible
mechanisms. At the Angstrom-nanometer size scale in an
aqueous solution, rotational Brownian motion (and thus
force) is comparable to translational Brownian motion; for
example in a time step of 1 ns, for a spherical protein of 36 Å
diameter the mean squared translational displacement will be
0:072 nm2, while the mean squared angular displacement
will be 0:017 rad2, corresponding to a mean of 0.129 nm
motion of a surface point. Thus, the rotational effects on the
separation may be expected to be significant.

If translational Brownian motion of the protein elements
dominated the simulation, one might expect that the average
distance between the centers of the proteins would correspond
to the average distance between the center of a sphere of radius
approximately 141 Å (linker length plus protein radii) and
points within that sphere, which is 3=4R ¼ 105:75 Å.

B. F€orster resonance energy transfer (FRET)
efficiency

Evers et al.41 performed FRET studies to determine how
different lengths of a flexible glycine-serine linker affect inter-
domain distances. They used a simple modeling approach
treating the linker as a random coil structure in order to exam-
ine the behavior of their systems. We applied our modeling
approach to the problem, both to attempt to reproduce their
results and to see what we can learn about the problem by hav-
ing an interrogable model system.

The temperature was set to 298 K and the viscosity to
1.31 cP, corresponding to 10% glycerol. The linker segment
lengths were 0.45 nm. In order to accommodate these short
link lengths, the volume exclusion and hydrodynamic drag
radii for the link nodes were set to be different (0.2 nm
and 0.3 nm, respectively). Enhanced cyan fluorescent protein
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(ECFP) was modeled with a hydrodynamic radius of 2 nm
and enhanced yellow fluorescent protein (EYFP) with
2.4 nm; we experimented with setting their volume exclusion
radii both equal to the hydrodynamic radii and to smaller
values, since ECFP and EYFP are somewhat non-spherical.

Rather than choosing a constant value of 2/3 for j2 in
calculating the F€orster radius, our method allows us to calcu-
late it each time step from the emission and absorbance tran-
sition dipoles of the ECFP donor and EYFP acceptor as

j2 ¼ ðcosðhTÞ " 3 cosðhDÞ cosðhAÞÞ2;

where hT is the angle between the emission and absorbance
transition dipoles of the donor and the acceptor, hD is the
angle between the vector joining the two chromophores and
the emission transition dipole of the donor, and hA is the angle
between the vector joining the two chromophores and the ab-
sorbance transition dipole of the acceptor. We observed that
while the mean value of j2 was indeed approximately 2/3, the

calculated energy-transfer efficiency differs substantially if
the per-frame j2 was used to compute it (Figures 5(a) and
5(b)). We also noted that smaller values for the volume exclu-
sion radii of ECFP and EYFP give results closer to accordance
with the experimentally measured values, suggesting that pro-
tein shape effects are indeed quite important. Each data point
corresponds to 40 simulations each of 40 ls, of which the first
1 ls is discarded to allow the simulation to randomize.

C. Chimeric activators

We are interested in engineering linkers which maximize
the effectiveness of the chimeric activator approach in
increasing the specificity of the Activity Element for its re-
ceptor. Accordingly, we performed simulations with a range
of linker lengths and stiffnesses and evaluated their effect on
receptor binding. Rather than simulate both the chimeric acti-
vator and the receptor for the Activity Element, we choose to
simulate only the chimeric activator and assume that the

FIG. 4. Average distance between simulated proteins connected by a highly flexible linker. (a) Two spherical proteins of diameter 36 Å were connected by a
simulated 35-amino acid glycine-serine linker represented as 10 completely flexible segments of length 10:5 Å attached via 9 intermediate spheres of diameter
of 4 Å; 3 amino acids roughly corresponding to a persistence length in a glycine-serine linker. The simulation was performed for 500 000 time steps of 0.5 ns.
(b) The left bar chart shows the statistics of the displacement between protein surfaces at each step in the simulation, while the right bar chart shows the statis-
tics for the linker attachment site on the proteins. (c) The simulation conditions are identical to those in (b) except that the linker is composed of 20 flexible
segments of length 10:5 Å attached via 19 intermediate spheres for a total length of 210 Å.
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receptor will occur in the membrane with a uniform distribu-
tion. Given this assumption what we are actually interested in
is the distribution of configurations that the Activity Element
assumes for a given linker type and problem geometry. We
can then write an expression in closed form for pbðRAÞ, the
probability of binding in a given time step due to a given con-
figuration of the Activity Element, by integrating over all
possible configurations RR for the Activity Element receptor

pbðRAÞ ¼
ð

RR

pbðRA;RRÞpðRRÞ;

where RA is the state of the Activity Element, pbðRA;RRÞ is
the probability of binding given the states RA and RR, and
pðRRÞ is the probability that the Activity Element receptor is
in state RR, which for these simulations is uniform in posi-
tion within the y ¼ 1:8 nm plane and uniform in rotation
around the y-axis. The numbers reported in Figure 6(c) are in
arbitrary units which are not scaled by either kon or the con-
centration of the Activity Element receptor, since the de-
pendence on both is strictly linear.

Each data point in Figure 6(c) corresponds to 40 simula-
tions over 100 ls, of which the first 1 ls is discarded to allow

the system to randomize itself. The temperature, viscosity
and linker segment lengths of the system are as in Sec. VI A.
The maximum error values for binding are set at
dmax ¼ 1nm; h3 ¼ p=4, and / ¼ p=4, and the target height
for the interferon alpha receptor (IFNaR) binding site is set at
3.65 nm above the surface. The error function e for the dis-
tance only is cut off such that eðd; dmaxÞ ¼ 0 when the y-value
of the Activity Element binding site is less than 3.65 nm. For
all linker configurations, the attachment site of the linker to
EGF is at the point offset 1.8 nm along the negative z-axis
from its center, while the linker attachment site for interferon
alpha is offset 1:8=21=2nm along the negative y-axis and
1:8=21=2nm along the positive z-axis from its center to better
reflect the linker configuration shown in Figure 1(d). The
linker stiffness had a significant impact on the overall dynam-
ics, as can be seen in videos with no bending stiffness45 and
the 20 z-N per nm stiffness.45

VII. DISCUSSION

Transcriptional control in higher organisms often
involves elaborate signal transduction pathways with multi-
ple steps that each offer points for engineering. These steps

FIG. 5. Calculated energy-transfer efficiency between ECFP and EYFP joined by a flexible glycine-serine linker as described in Evers et al.41 The energy-
transfer efficiency was calculated according to the formula for F€orster distance which depends on j2, which is in turn a function of the relative position and ori-
entation of the fluorophores. We simulated ECFP-linker-EYFP configurations with varying linker lengths and calculated the energy-transfer efficiency
with both (a) per-frame calculated j2 and (b) constant j2 ¼ 2=3.

FIG. 6. Effect of modulating the linker length on binding of a tethered ligand to its receptor in simulations of constrained Brownian motion on a cell surface.
The rate of binding of IFNa element of an (IFNa)-EGF fusion protein to the IFNaR was estimated, assuming that the EGF was already irreversibly bound to
EGFR on the same cell surface. (a) Simulation schematic. The binding reaction takes place in a wrap-around box of dimensions 140+ 140+ 140 nanometers
with one copy of each molecule, corresponding to about 75 000 molecules/cell for a typical mammalian cell. The radius of each protein element is 18 Å. The
fixed EGF/EGFR element is raised 7.2 nm from the cell surface. Movement of the linker elements was completely unconstrained. (b) Modulation of linker
stiffness. The stiffness of the linker was varied by introducing a spring force (gray dotted lines) between alternating elements in the linker, and varying the
strength of this force. (c) Relative on-rates in arbitrary units as a function of linker length and stiffness. The on-rates of IFNa for IFNaR in the tethered system
of (a) were determined in 100 lm simulations. One nanometer corresponds to about three amino acids.
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include protein assembly reactions such as ligand-receptor
binding, oligomerization of phosphorylated proteins, and co-
operative interactions on DNA to create a transcriptionally
active state. To achieve on/off behavior, these reactions are
often highly cooperative and involve multiple weak interac-
tions that occur in three dimensions. In the course of evolu-
tion, Nature routinely modulates the ability of proteins
(as well as RNA and DNA) to bend, rotate, and weakly inter-
act. However, human engineering of these parameters has
been limited because of the lack of a mapping function that
converts protein-engineerable inputs such as binding
strengths; protein shape; the length, flexibility, and attach-
ment sites of linkers, and three-dimensional geometry of
binding into an output of system activity.

The goal of the present work is to develop a simulation
tool that will predict system outputs such as particular protein
assembly events when a user varies such inputs. Our approach
builds on previous simulations of natural protein assembly sys-
tems in which proteins are abstracted as rigid objects to allow
for simulation on long timescales. This framework involves
the summation of Brownian forces and viscous drag with
forces representing the action of engineerable elements such as
linkers and binding positions and strengths.

Based on this framework, we simulated the behavior of
two proteins attached by a flexible glycine/serine-type linker.
In a simulation of an abstracted pair of proteins and a linker,
we found that the average distance between the protein ele-
ments was much shorter than the maximal length of the linker,
suggesting that the behavior of such a fusion protein might be
more influenced by the dynamics of the linker itself rather than
Brownian motion of the protein elements (Figure 4). We also
tested the ability of such a simulation to reproduce FRET data
produced from ECFP and EYFP attached by linkers of various
lengths, and found a reasonable correspondence of theory and
data (Figure 5). Finally, we simulated the second-step binding
of a chimeric activator; a fusion protein consisting of two
linker-attached ligands was pre-bound to one cell-surface re-
ceptor and the binding rate of the other ligand to its receptor
was measured as a function of linker length and stiffness. A
maximal binding rate was obtained with an intermediate linker
length and higher stiffness (Figure 6).

Previous efforts to simulate the three-dimensional
movement and assembly of proteins on long timescales have
focused on natural phenomena such as assembly of microtu-
bules and viruses. For example, Hagan and Chandler previ-
ously used a similar approach, simulating the assembly of
viral capsid proteins into higher-order structures by abstract-
ing the proteins as spheres with radially defined bonding
surfaces.42

Although our simulation system is at an early stage of de-
velopment, we were able to perform simulations of flexible
protein systems that may offer insight to genetic engineers
into how these systems behave. The first simulation was of a
fusion protein consisting of two equal-sized 36 Å diameter
spherical proteins attached by a linker of 35 amino acids.
This corresponds roughly to the chimeric activator protein of
Cironi et al.,7 an interferon-alpha–linker (35AA)–EGF fusion
protein. One result of the simulation was that while the end-
to-end length of the linker is in principle up to 105 Å, the

mean distance between the proteins was actually only 16 Å.
To achieve simultaneous binding of interferon alpha and
EGF to their receptors, the linker attachment sites would
need to be separated by at least about 65 Å, which was
achieved less than 4% of the time. The effect of increasing
the linker length by 2-fold increased the portion of the time at
at least 65 Å to 37% a factor of nearly 10-fold (Figure 4(c)).

In this context, it is interesting to note that while the
electrostatically neutral ðGly4SerÞn linker used by Cironi
et al.7 is a standard flexible linker in protein engineering, a
naturally occurring linker in the M13 gene 3 attachment pro-
tein has the sequence ðGly3SerGluÞn. The repeating nega-
tively charged glutamic acid may prevent self-interaction of
this linker and add some stiffness without overly constrain-
ing the conformations adopted by the large domains in the
gene 3 protein. From an engineering perspective, this sug-
gests that a linker which did a better job of separating the
domains could have a significant effect on the binding effi-
ciency of the system. Note that we modeled an effective per-
sistence length of 10:5 Å; it has been suggested that the
physical persistence length may be as short as 4:5 Å,43 so we
may actually be over-estimating the effective separation.

Our specific simulation results illustrate why such simu-
lations may be more useful than simple theoretical predic-
tions. For example, it might be imagined that two protein-
sized spheres of diameter Dbig, connected by a chain of N
links of length Dsmall would have an average distance of
Dbig þ N

1
2 , Dsmall, corresponding to a random walk in three

dimensions. The addition of a “no-knot” constraint would be
expected to increase the average distance. However, we
actually observed a very short distance between protein
spheres in our simulation.

In a second simulation, we measured the predicted
FRET signal from a fusion protein consisting of EYFP and
ECFP attached by a flexible linker. Evers et al.41 previously
determined FRET signals as a function of the linker length
between these proteins, and obtained similar results to our
predictions, which supports our approach. One factor in the
F€orster theory of FRET is j, which is a function of the angles
between the dipoles in the fluorescent proteins. On average,
j2 will be about 2/3 for two dipoles randomly positioned rel-
ative to each other, and this value is often used in interpret-
ing experimental FRET data. One aspect of our simulation is
that it allowed a direct calculation of j as well as separation
distance at each timepoint in the simulation. We found that
when j was calculated for each frame, the average value was
indeed about j2 ¼ 2=3, but that the predicted FRET signal
was lower than when a uniform value of j2 ¼ 2=3 was used;
this observation illustrates how our simulation approach may
reveal subtle effects that are otherwise difficult to identify.
The result that the FRET efficiency predicted by us is sub-
stantially lower than that observed by Evers et al. could be
explained by our spherical shape approximation, which may
limit close approaches of the dipoles.

In a third simulation, we measured the on-rate of a
ligand binding to its cell-surface receptor, in which the
ligand was pre-tethered to the cell surface by attachment to a
second, prebound ligand via a linker. This situation is a
model for the action of targeted fusion proteins that
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simultaneously bind to two receptors on a cell surface. Such
molecules acting on the cell surface are candidate therapeu-
tics, and even slight improvements in specificity can lead to
reduced side effects as perceived by patients. Thus, the exis-
tence of a theoretical approach such as ours could aid the
design of modified, improved therapeutics through small
additive improvements that might be hard to identify in a
large parameter space through trial and error. We found that
a linker of intermediate length was optimal for maximizing
the second binding event, and some effect of linker stiffness
was also observed. Other factors could also be taken into
account either as variables to be engineer or constraints on
the system, such as relative height of the two receptors from
the cell membrane, the angle at which the linker emanates
from each ligand, and the closest allowable approach of the
two membrane to each other.

We envision that our simulation framework could be
applied to each aspect of signal transduction, particularly the
design of artificial transcription factors. The binding of tran-
scription factors to DNA usually involves non-specific bind-
ing to DNA followed by one-dimensional diffusion along the
DNA and sometimes transfer between strands that are close
in three dimensions.44 These processes are analogous to the
two-dimensional diffusion and binding processes depicted in
Figure 6, and could be modeled in the design of new tran-
scription factors. For example, in engineering combinatorial
control at the DNA level, it would be useful to have heterodi-
meric transcriptional activators in which each subunit repre-
sents a component of an AND gate. The subunits might have
high one-dimensional diffusion rates that would be inevita-
bly reduced upon dimerization due to the more extensive
DNA contact; it may be useful to estimate target parameters
using our framework in designing such transcription factors.
Modeling of tethered configurations should also be useful in
design of artificial transcription factors with activation
domains, or to engineered flexible cytoplasmic signaling fac-
tors, and we expect that our framework could be applied to
these problems after further development.

VIII. CONCLUSION

In the present work, we focused on Brownian motion
and binding events (on-events) for protein elements approxi-
mated as spheres. Ultimately, a refined simulation tool would
also represent electrostatic interactions that could affect on-
rates or non-specific interactions, off-rates, protein shapes
that deviate from spheres, etc. The value of such a system is
that it would represent those features that can be altered by
amino acid substitution, addition of protein domains,
N-linked glycosylation sites, and other tools of the trade of
genetic engineers, allowing semi-quantitative in-silico pre-
diction and visualization of the properties of engineered sys-
tems before spending the time and resources to create them
experimentally.
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