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Figure 1: (Left) Many rigid balls with varying densities plunge into a pool of water. (Center) Water splashes out of an elastic cloth bag.
(Right) A balloon shoots upwards, releasing a jet of smoke.

Abstract

We propose a novel solid/fluid coupling method that treats the cou-
pled system in a fully implicit manner making it stable for arbitrary
time steps, large density ratios, etc. In contrast to previous work in
computer graphics, we derive our method using a simple back-of-
the-envelope approach which lumps the solid and fluid momenta to-
gether, and which we show exactly conserves the momentum of the
coupled system. Notably, our method uses the standard Cartesian
fluid discretization and does not require (moving) conforming tetra-
hedral meshes or ALE frameworks. Furthermore, we use a standard
Lagrangian framework for the solid, thus supporting arbitrary solid
constitutive models, both implicit and explicit time integration, etc.
The method is quite general, working for smoke, water, and multi-
phase fluids as well as both rigid and deformable solids, and both
volumes and thin shells. Rigid shells and cloth are handled auto-
matically without special treatment, and we support fully one-sided
discretizations without leaking. Our equations are fully symmet-
ric, allowing for the use of fast solvers, which is a natural result of
properly conserving momentum. Finally, for simple explicit time
integration of rigid bodies, we show that our equations reduce to a
form similar to previous work via a single block Gaussian elimina-
tion operation, but that this approach scales poorly, i.e. as though in
four spatial dimensions rather than three.
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1 Introduction

Simulation of the physical interaction at solid/fluid interfaces has
been the subject of much recent work in computational physics as
well as in computer graphics. Typically the effect of the solid on
the fluid is modeled by taking the solid velocity as a boundary con-
dition for the fluid solve. Conversely, the effect of the fluid on the
solid is determined by integrating the fluid pressure along the solid
boundary to compute a force on the solid. This basic approach has
been employed both in an interleaved fashion, solving the solid or
fluid system separately at each step using the results of the previous
step, as well as in a fully coupled fashion where the fluid and solid
equations are solved simultaneously in one combined system. In
general, neither the interleaved nor the coupled treatments conserve
momentum at the solid/fluid interface, and this lack of conservation
negatively impacts both accuracy and stability of the overall simu-
lation, especially in the case of stiff coupling problems or large time
steps where large errors can lead to large velocities if momentum is
not conserved.

In this paper, we instead derive our equations from the physical
principle that momentum should be conserved at the solid/fluid
boundary subject to the constraint that the relative velocities are
zero. In addition to conserving momentum and enforcing the no-
slip boundary condition, our approach utilizes the standard Carte-
sian Eulerian grid for the fluid and Lagrangian mesh for the solid
and results in a sparse, symmetric linear system. The method is
sufficiently general to treat rigid, deformable, volumetric and thin
solids coupled to multiphase incompressible flow.

2 Related Work

State-of-the-art solvers typically use Eulerian methods for fluids
and Lagrangian methods for solids, but it has proven difficult to
couple these disparate simulation methods together. Thus, many
researchers have taken a fully Lagrangian approach [Terzopoulos
et al. 1989; Hadap and Magnenat-Thalmann 2001; Müller et al.
2004a; Müller et al. 2004b; Keiser et al. 2005; Yuksel et al. 2007;
Bargteil et al. 2007], e.g. using particle-based methods for both the
fluid and the solid ([Müller et al. 2004a; Keiser et al. 2005]). Al-
ternatively, one could use Eulerian methods for both the fluid and
the solid, treating solids as high viscosity or viscoelastic Eulerian
fluids [Carlson et al. 2002; Rasmussen et al. 2004; Goktekin et al.



Figure 2: A light sphere and then a heavy sphere are dropped into a thin shell rigid boat floating in a pool of water (160 × 120 × 160 fluid
grid). The light sphere barely rocks the boat, while the heavy sphere sinks it, and the light sphere bobs back to the surface.

2004; Losasso et al. 2006b]. See also [Faure et al. 2007] for an
interesting approach that applies an Eulerian contact model based
on implicitly integrated repulsion forces to various simulation ob-
jects including Smoothed Particle Hydrodynamics fluid with thin
deformable shells and an Eulerian fluid with volumetric rigid and
deformable solids.

Coupling an Eulerian fluid to a Lagrangian solid is typically ac-
complished using the solid velocity as a boundary condition for the
fluid while integrating the pressure force on the surface of the solid,
e.g. [Yngve et al. 2000; Génevaux et al. 2003; Carlson et al. 2004;
Guendelman et al. 2005; Losasso et al. 2006a]. These approaches
treat coupling in either an explicit or semi-implicit fashion and thus
stability and accuracy issues remain. For example, [Carlson et al.
2004; Guendelman et al. 2005; Losasso et al. 2006a] solve a Pois-
son equation with the solid density rasterized onto the fluid grid
alleviating some stability issues, but this rasterization does not ac-
count for the rigidity of objects, internal elastic forces, etc. After-
wards, [Carlson et al. 2004] projects the velocity field pertaining

Figure 3: We demonstrate that our method handles buoyancy cor-
rectly by releasing rigid spheres of varying density in a pool of wa-
ter (200 × 75 × 50 fluid grid).

to the rigid body to enforce rigidity, but this creates a discontinu-
ous velocity which allows fluid to leak into and out of the solid.
[Guendelman et al. 2005; Losasso et al. 2006a] instead only use the
Poisson equation to calculate forces on the solid, and afterwards
project the fluid to be consistent with the resulting solid velocity
in order to prevent leaking – however, this makes the method less
stable.

[Klingner et al. 2006; Chentanez et al. 2006; Batty et al. 2007]
consider fully implicit stable two-way coupled interactions between
solids and fluids. [Klingner et al. 2006; Batty et al. 2007] are lim-
ited to rigid bodies, and although they add only a rank 6 update
per body to their fluid Poisson matrix, the resulting number of el-
ements scales like a four spatial dimensional problem instead of
three. [Chentanez et al. 2006] addresses deformable objects, but
obtains a non-symmetric discretization. These methods do not ad-
dress rigid shells or cloth.

The straightforward method of using Neumann boundary condi-
tions on the fluid and integrating the pressure force on the bound-
ary of the solid as used in [Guendelman et al. 2005; Losasso et al.
2006a] and the Eulerian version of [Chentanez et al. 2006] does not
conserve momentum. Thus even though [Chentanez et al. 2006]
proposes a fully implicit coupling, the Eulerian version of their
method can still be unstable and yield nonphysical behavior. The
key to fixing this is to properly and conservatively account for all
pressure forces that transmit momentum between fluid and solid,
as our formulation does while yielding a symmetrically coupled
system. Unlike their Cartesian counterparts, Arbitrary Lagrangian-
Eulerian (ALE) meshes can more readily be made to conserve mo-
mentum as long as the solid/fluid boundary faces are treated in the
same conservative fashion as internal fluid/fluid faces. However,
ALE methods require moving meshes that can lead to poor aspect
ratios requiring frequent remeshing, and thus we prefer an Eulerian
approach. Moreover, it would be difficult to create an ALE fluid
mesh that conforms to a deforming piece of cloth.

3 Motivation

Consider a two-dimensional example of an axis-aligned interface,
and a particular dual cell (a staggered cell between two pressure
samples in the standard MAC grid discretization) which is half
filled with each of two distinct materials with densities ρ1 and ρ2



(Figure 4). This simple case degenerates into a one-dimensional
problem. Given the constraint that the materials remain in contact,
moving together, we can compute the pressure gradient’s contri-
bution to each material. If the pressure at the interface between
the materials is pi+1/2 at xi+1/2, then conservation of momentum
gives

Du1

Dt
=

pi − pi+1/2

∆xρ1/2
and

Du2

Dt
=

pi+1/2 − pi+1

∆xρ2/2
. (1)

The constraint that the interface remain in contact implies that
Du1/Dt = Du2/Dt, and thus

pi+1/2 = (ρ2pi + ρ1pi+1)/(ρ1 + ρ2). (2)

When ρ1 = ρ2, the pressure profile is linear as illustrated by the red
line in Figure 4. When ρ1 is larger (smaller) than ρ2, the pressure
profile instead looks like the black (green) line.

We next consider the momentum update equation

un+1 = u? − (∆t/ρ)∇p (3)

used by [Batty et al. 2007] to derive their kinetic energy minimiza-
tion. Scaling by the volume of fluid in the dual cell, VF , we obtain

MF un+1 = ρVF un+1 = ρVF u? − VF ∆t∇p, (4)

where MF is the mass of the fluid in the dual cell. Thus the
total pressure-based impulse transferred to the cell is given by
∆tVDC∇p where VDC is the total volume of the dual cell, and
[Batty et al. 2007] transfer VF /VDC of this impulse to the fluid and
(VDC − VF )/VDC to the solid. The amount of impulse transferred
to each material depends only on the volume of that material in
cell, equivalent to the red line in Figure 4. The impulse distribution
necessary to maintain contact varies with the material densities, as
shown above, so this gives a nonphysical result in most cases, ex-
acerbated in the case of thin shells, which have zero volume. Note
that while [Batty et al. 2007] computes a nonphysical pressure pro-
file within a single dual cell, the ghost-like pressures interior to the
volumetric rigid bodies in their method allow them to maintain ve-
locity compatibility between the solid and the fluid. However, since
the force is distributed incorrectly in space, this may result in an in-
correct torque. The result of replacing the coupling component of
our time integration (see Section 7) with that of [Batty et al. 2007]
is shown in Figure 5.

Given that this kinetic energy formulation admits a nonphysical an-
swer in our simple one-dimensional example, we prefer a back-of-
the-envelope type approach as described above, where we lump the

Figure 4: (Left) A two-dimensional drawing of a dual cell con-
taining two materials of different densities. (Right) A graph of the
pressure profile on a cross-section through the cell connecting pi to
pi+1, i.e. xi to xi+1.
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Figure 5: A graphical comparison between our coupling method
and that of Batty et al. illustrating the relationship between rise
rate and density of fully immersed rigid spheres starting from rest
at height 1.

fluid and solid together assuming that they move at the same ve-
locity, compute the change in momentum for the combined system,
and then unlump the materials computing the respective pressure
gradient for each. That is, our computational approach to treating
mixed solid/fluid cells is to map the fluid mass and momentum to
the solid nodes, calculate conservation of momentum as usual on
each node of the solid taking into account the added fluid quan-
tities, and finally remap the fluid velocities back to the Cartesian
grid. We solve for cells which are completely filled with fluid as
usual, meaning that the overall fluid discretization looks like that of
a typical voxelized solid. The only difference is that the mixed dual
cells are not treated as completely solid, but instead treated using
our computational version of the back-of-the-envelope calculation.
Similarly, the solid discretization proceeds in standard fashion, ex-
cept that we lump some extra mass and momentum onto the solid
nodes.

Figure 6: Many rigid bodies circulate in a turbulent fountain,
demonstrating scalability and dynamic interactions between rigid
bodies (i.e. collisions) (100 × 150 × 100 fluid grid).



Figure 7: 24 rigid spheres of varying density are dropped into a pool of water, demonstrating scalability to many bodies (225 × 300 × 150
fluid grid).

4 Conservation of Momentum

We discretize the fluid momentum equations in typical fashion,
splitting them into the calculation of an intermediate velocity fol-
lowed by a pressure projection to obtain a divergence free velocity
field.

u? − un

∆t
+ u · ∇u = f (5)

un+1 − u?

∆t
+
∇p

ρ
= 0 (6)

For purposes of solid/fluid coupling it makes sense to consider
Equation (6) in control volume form. In a standard MAC grid dis-
cretization the control volumes for the velocity appear on different
dual cells surrounding the faces. For the u velocity the dual cells
are the regular cells shifted to the left and right by ∆x/2, for the v
velocity they are shifted up and down by ∆y/2, etc.

First consider the dual cells for the u velocity, where we have

Mun+1 −Mu? + ∆tV px = 0 (7)

where ρ = M/V . This equation states that the net change of mo-
mentum in the cell is given by the pressure forces on the boundary,
i.e.

V px = (∆x∆y∆z)(pi+1 − pi)/∆x

= ∆y∆zpi+1 −∆y∆zpi, (8)

indicating that the pressure contribution to this cell is simply ob-
tained by multiplying the pressure on the left and right faces by the
area of the cell face. Thus we can rewrite Equation (7) as

Mun+1 −Mu? + ∆tA(pi+1 − pi) = 0. (9)

Note that here M represents the mass of the whole dual cell, A the
area of the whole face, and pi+1 and pi are defined across the whole
face. Thus for a mixed dual cell which has both solids and fluids
in it, this equation represents the net change in momentum for the
cell.

If one were solving only for the fluid component in the dual cell,
M should only represent the mass of fluid, and one would have to
decide what portion of the impulse−∆tA(pi+1−pi) is allocated to

the fluid and what portion is allocated to the solid, as in our example
in Section 3. That is, the fluid update equation would look like

MF un+1
F −MF u?

F + ∆tA(pi+1 − pi) + IDC = 0 (10)

where IDC is the momentum transferred to the solid.

Conservation of momentum on the solid nodes can be written as

MSVn+1
S = MSV?

S + ∆tDVn+1
S + W T I (11)

where MS is the mass of the solid, VS is the solid velocity, V?
S

includes all of the explicitly integrated forces, and D is the coef-
ficient matrix for the implicitly integrated damping forces. W T I
represents the momentum transfer from fluid to solid, where I is
a vector containing all the IDC values from the dual cells which
contain both fluid and solid, and W T conservatively partitions this
momentum among all of the solid nodes.

The time integration can be explicit, semi-implicit, or fully im-
plicit. For fully explicit time integration of the solid, such as in the

Figure 8: A soft torus is dropped into a pool of water, showing two-
way coupling with a deformable body (100× 100× 100 fluid grid,
44k tetrahedra).



Figure 9: A sheet of cloth is pulled out of a tank of water (140 ×
140 × 70 fluid grid, 2.5k triangles).

rigid body approach of [Klingner et al. 2006] or [Batty et al. 2007],
D = 0 and all forces are accounted for in V?

S . This is also true for
deformable objects if both elastic and damping forces are handled
explicitly. In the semi-implicit approach of [Bridson et al. 2003] the
elastic forces are handled explicitly but the damping forces are han-
dled implicitly, and D is a symmetric negative definite matrix. Our
formulation also allows for a fully implicit approach, as in [Baraff
and Witkin 1998], where D is a linearization of both the elastic and
damping forces (notably, in the [Baraff and Witkin 1998] approach
D is also symmetric, and thus we will assume that it is symmetric
throughout the paper). Note when using the fully implicit scheme
that D represents the linearization for one Newton-Raphson iter-
ation, and thus repeated solves are required if more iterations are
necessary.

5 Momentum Transfer

Whereas the equations for conservation of momentum in Section 4
use I to represent the momentum transferred between solid and
fluid, in general I is difficult to formulate explicitly, and in par-
ticular IDC requires integrating the pressure force on a complex
solid/fluid boundary in a mixed dual cell. To conserve momen-
tum, I should contain all of the IDC terms and the columns of
W T should sum to one so that no momentum is lost. [Guendel-
man et al. 2005; Losasso et al. 2006a] and the Eulerian grid version
of [Chentanez et al. 2006] all interpolate the pressure to the triangle
boundary faces of the solid without ensuring that the momentum
imparted to the solid is exactly that taken from the fluid. This can
lead to both stability problems and inaccurate or nonphysical be-
havior. The kinetic energy formulation of [Batty et al. 2007] con-
serves momentum but incorrectly and nonphysically estimates IDC

based on the relative volume fractions of fluid and solid within the
cell (as discussed in Section 3).

We propose using our back-of-the-envelope procedure in order to
avoid explicitly calculating IDC . First, in each mixed dual cell we
desire combined equations for the solid and fluid, so instead of us-
ing Equation (10) to individually conserve momentum for the fluid
portion of the mixed dual cell, we map the fluid mass and momen-
tum to the solid nodes and enforce conservation of momentum there

(Equation (11)), which gives

M̃S Vn+1
S =MSV?

S + ∆tDVn+1
S + W T I (12)

+ ΣDCWT
DC(MF u?

F −∆tV∇DCp− IDC) ,

where M̃S is the nodal mass including both the solid and the
lumped fluid and∇DCp is the appropriate component of∇p across
dual cell DC. Since W T I = ΣDCWT

DCIDC , all terms contain-
ing IDC drop out. Next we solve conservation of momentum in
the solid/fluid system, as explained in Section 6. Afterwards, the
velocity of the fluid in the dual cell is interpolated back from the
solid using the appropriate rows of W , i.e. WDCVn+1

S . The rows
of W sum to one, and therefore W is an interpolation operator that
interpolates the solid velocity to the dual cell faces.

In summary, for mixed dual cells we lump the fluid onto the solid,
solve for conservation of momentum in the combined system with-
out needing to form IDC , and then use W to interpolate back the
velocity of the fluid. This is similar to our back-of-the-envelope
calculation, the final step of which was to construct our pressure
profiles given the intermediate pressure pi+1/2, which here corre-
sponds to determining IDC . Now that we have un+1

F , IDC could
be calculated, but since our goal was to update the solid and fluid
velocities to time tn+1, this is unnecessary.

After fluid lumping and simplification, the solid momentum update
equation becomes

(M̃S−∆tD)Vn+1
S +∆tW T V Gp = MSV?

S +W T MF u?
F (13)

where p is the vector of pressures, G is the standard gradient op-
erator such that Gp gives the gradient of pressure on all dual cells,
and V is the volume of a dual cell (which is the same for all dual
cells in any of the x, y and z directions). M̃S is the diagonal mass
matrix created by lumping the fluid mass onto the solid. W T maps
dual cells to solid nodes, so each component of W T MF tells us
how much to augment the respective diagonal component of MS .
Alternatively, even while solving for conservation of momentum in-
dependently on the nodes of the solid and the unmixed cells of the
fluid, one could still enforce Equation (10) to be true. This requires
mapping Equation (10) itself to the solid nodes using W T

DC and still
yields Equation (13), except with M̃S equal to MS + W T M̄F W ,
where M̄F is a diagonal matrix of the masses of the fluid on all
mixed dual cells. This gives a symmetric rather than diagonal mass
matrix formulation which poses no added difficulty since D is al-
ready symmetric and M̃S − ∆tD is the coefficient matrix in the
solid equations. We used the diagonal version of M̃S in our exam-
ples.

We construct W by only considering coupling with surface nodes
of the solid, which allows a consistent treatment for thin shells and
volumetric objects. Each row of W pertains to a particular dual
cell, and we construct it as follows. For each solid node which
lies on any triangle face that intersects a given dual cell, we create
a weight proportional to the area of the face intersecting that dual
cell. Afterwards, these weights are normalized such that each row
adds to one.

For each mixed dual cell, we compute the fluid volume by sub-
tracting off the solid volume from the total volume of the dual cell.
A more accurate computation of fluid volume (and subsequently
mass) could be performed but we found our approximation to be
sufficient.



Figure 10: A stream of water pours into an elastic cloth bag suspended by its rim (100 × 375 × 100 fluid grid, 1k triangles). The bag
deforms under the impact of the water and then recovers, filling and expanding until the water overflows and runs down its sides.

6 Linear System

The system of linear equations for the fluid is typically derived by
enforcing incompressibility via

∇ · un+1
SF = 0 (14)

where in our formulation

un+1
SF =


u?

F −∆tGp/ρ all fluid dual cell
WDCVn+1

S mixed solid/fluid dual cell (15)

This is identical to a voxelized solid formulation, except that
WV n+1

S is replaced with the known solid velocity. For conve-
nience, we use a scaled pressure of p̂ = p∆t and for symmetry
we scale Equation (14) by V . Using Equations (13), (14) and (15)
we write our linear system as 

V GT 1
ρ G −V GT W

−W T V G −M̃S + ∆tD

!„
p̂

V n+1
S

«
=

„
V GT u?

F

−MSV ?
S −W T MF u?

F

«
(16)

where G is the gradient operator and GT is minus one times the
divergence operator.

6.1 Solving the Linear System

Independently, the solid and fluid systems can be made at least
symmetric positive semidefinite, but the coupled system is symmet-
ric indefinite. However, it can still be solved quite efficiently with
MINRES (see [Choi 2006]), since it is symmetric. Non-symmetric
linear systems are much more difficult to solve [Demmel 1997].

When the mass matrix M̃S is diagonal and damping is treated ex-
plicitly with D = 0, the lower right hand block of our matrix is
diagonal and a single Gaussian elimination operation can be used
to reduce the two-by-two system by inverting M̃S and eliminating
V n+1

S . However, this method scales rather poorly. For example,
consider a rigid body whose velocity depends on all the pressures
that touch its surface. This block Gaussian elimination couples each
pressure on the surface to every other pressure on the surface, i.e.
each of the O(n2) pressures (where n is the number of pressure
samples in a single dimension) on the surface of the rigid body
has O(n2) nonzero elements in the coefficient matrix for a total of
O(n4) nonzero elements. Although a typical Cartesian fluid mesh

has O(n3) unknowns and a matrix with O(n6) entries, there are
only O(1) nonzero entries per row for a total of O(n3) nonzero en-
tries. That is, of the potential O(n6) entries a sparse matrix struc-
ture only requires O(n3), whereas the block reduced form, which
is also the form proposed in [Chentanez et al. 2006] and [Batty
et al. 2007], requires O(n4). [Batty et al. 2007] allude to this issue
when they state that since they apply a rank 6 update, linear alge-
bra tricks could be applied; however, they do not propose any such
techniques. But it seems likely that the application of any such tech-
niques would make the system difficult to precondition. Regardless,
when M̃S is not diagonal or the damping is not explicit, one cannot
perform the block Gaussian elimination.

Indefinite systems are quite common in computational fluid dy-
namics. For example, consider solving the incompressible Navier-
Stokes equations with constant density and an implicit discretiza-
tion of viscosity,

un+1 − un

∆t
+ u · ∇u +∇p̃ = ν∆un+1 + f (17)

∇ · un+1 = 0 (18)

where p̃ = p/ρ. For simplicity we either ignore the u · ∇u term,
as is done in Stokes flow, or discretize it explicitly at time tn and
lump it into f . The resulting system of equations looks like„

0 GT

G I −∆tν∆

« „
p̂

un+1

«
=

„
0

f̂

«
. (19)

The matrix is symmetric and the lower right hand block is sym-
metric positive definite, but the nonzero off-diagonal blocks com-
bined with the zero in the upper left block yield an indefinite sys-
tem. Let A = I − ∆tν∆. We can perform Gaussian elimina-
tion by inverting A to obtain un+1 = A−1(−Gp̂ + f̂), which
when substituted into the top row gives the positive definite system
GT A−1Gp̂ = GT A−1 f̂ . As mentioned above, we cannot carry out
this strategy for our solid/fluid coupling system except when M̃S is
trivial to invert and the damping is fully explicit, and the same is
true here as A−1 requires inverting a Laplacian. Computational
strategies for solving this classical problem including methods for
indefinite systems, MINRES, block Gaussian elimination, inner and



Figure 11: An elastic cloth bag is submerged in and then quickly pulled from a pool of water, carrying fluid with it (140 × 210 × 140 fluid
grid, 1k triangles). The bag bounces as it is raised, expanding and contracting, which causes water to splash out. The bag eventually settles.

outer iterations where a conjugate gradient method is applied re-
peatedly to invert A, etc. are quite common, and thus casting our
solid/fluid coupling problem into similar form allows us to benefit
from previous insights. We consider this a promising avenue for
future investigation.

We use an Incomplete Cholesky preconditioner as usual for the
pressure rows of our system, and a block diagonal mass-inverse
preconditioner for the solid velocity rows. The mass-inverse pre-
conditioner is computed after the fluid mass has been lumped onto
the solid nodes.

Figure 12: A balloon is filled by a jet of fast-moving smoke, reach-
ing a state of strong tension (100 × 150 × 100 fluid grid, 1k tri-
angles). The balloon is then released and expels smoke at a very
high speed, accelerating upwards, and passes through the edge of
the domain without any discontinuities. The high tension and fast
velocities highlight the stability of our fully coupled method.

7 Time Integration

Our two-way coupled time integration scheme hybridizes fluid evo-
lution with a Newmark method for solid integration [Bridson et al.
2003]. Typically Newmark iteration requires one to solve a lin-
ear system for the solid velocities twice per time step, and these
solves are replaced with Equation (16). The first coupled solve is
done with the positions frozen at time tn and thus all fluid forces
are used except convection (i.e. except u · ∇u). The second solve
is used to update the momentum, and there convection is applied.
Our method proceeds as follows:

F1: Use all non-pressure based and non-advection based fluid
forces (i.e. external forces and viscosity) to advance the fluid ve-
locity to time tn+1/2,

u
n+1/2
F = un

F + (∆t/2)(f + ν∆u
n+1/2
F ). (20)

S1: Integrate all explicit solid forces to time tn+1/2,
V n

S → V
n+1/2?

S . Solve Equation (16) for the coupled system
to obtain V

n+1/2
S . The resulting V

n+1/2
S is then used to update the

solid positions, for collisions, etc, just as in a standard Newmark
algorithm (e.g. [Sifakis et al. 2007]). This step follows the standard
position update procedures for deformable bodies and rigid bodies,
except that the velocity solve incorporates the fluid pressure. After
the solve, the fluid pressure and the results of F1 are discarded.

F2: Following [Guendelman et al. 2005], we prevent leaking by
forcing the fluid to move with the solid effective velocity, calculated
as the change in the position of the solid during S1. A standard fluid
Poisson equation is solved using the solid effective velocity mapped
onto the Eulerian grid by W as Neumann boundary conditions to
project un

F . The resulting projected velocity is our leak-proof ad-
vection velocity uADV .

F3: We calculate the intermediate fluid velocity via

(u?
F − un

F )

∆t
+ uADV · ∇un

F = f + ν∆u?
F . (21)

Note that the advection velocity uADV is used to formulate the
rays in the typical semi-Lagrangian scheme [Stam 1999], but the
advected quantity is the actual fluid velocity un

F . uADV is also



Figure 13: Water is two-way coupled to a fish with an embedded proportional derivative controlled articulated skeleton and a deformable
exterior (192 × 216 × 144 fluid grid, 42k tetrahedra).

used to advect all other fluid scalar quantities to time tn+1. Since
this advection velocity exactly conforms to the effective velocity of
the solid, it prevents leaking.

S2: Integrate all explicit solid forces to time tn+1, V n
S → V ?

S .
Solve Equation (16) to find V n+1

S , and otherwise carry out the stan-
dard algorithms for deformable and rigid bodies (e.g. [Sifakis et al.
2007]). Note that this time the fluid pressure is not discarded.

F4: Using the fluid pressure from S2, project the intermediate fluid
velocity u?

F to be divergence free, u?
F → un+1

F .

In summary, there are three implicit solves, two for the coupled
system (using MINRES) and one for the fluid (using conjugate gra-
dients). This is the typical situation even in interleaved computa-
tions as Newmark time integration requires two conjugate gradient
solves and fluids require one. The additional cost here is that the
two conjugate gradient solves for the solid have the added coupling
to the fluid in the linear system and now require MINRES due to
indefiniteness.

8 Rigid Body Implementation

For the sake of exposition, our discussion of the algorithm glossed
over some details for the case where the solid is a rigid body, and
so we present them here for completeness.

As in the case of a deformable solid, fluid mass is lumped onto
the rigid body in a dimension by dimension manner. The modified
rigid body mass in dimension i is given by M i = Mi+

P
f wfmf ,

where the sum is over the set of mixed dual cells in dimension i, wf

is the interpolation weight for the rigid body in dual cell f , and mf

is the fluid mass in f . After lumping fluid mass onto the rigid body,
we compute its updated center of mass via

M iXi = MXi +
X

f

wfmfRf,i (22)

where Rf is the world space position of f . The angular momentum
is modified to account for the change in center of mass to obtain

L = L + P∗(X−X) (23)

where P is the linear momentum and P∗ represents the cross prod-
uct matrix. The modified rigid body inertia tensor is

I = I + M(X−X)∗(X−X)∗T

+
X

i

X
f

wfmf (Rf −X)∗eie
T
i (Rf −X)∗T (24)

where the first two terms express the inertia tensor of the rigid body
in the coordinate system at the new center of mass and the third term
accounts for the dimension by dimension lumping of fluid mass
onto the body.

Fluid momentum from mixed dual cells is lumped onto the rigid
body as well. The momentum from a mixed dual cell f is mapped
in the usual fashion for an impulse j = mfu?

fei, i.e. ∆P = j,
∆L = (R−X)∗j. The total linear and angular momentum mapped
is then

P
i

P
f wf∆P and

P
i

P
f wf∆L, respectively.

After lumping mass and momentum, we solve Equation (16) to ob-
tain V and ω. Unlumping the fluid mass requires one to modify the
rigid body velocity to V = V + ω∗(X −X), whereas ω remains
unchanged.

9 Examples

We demonstrate coupling of volumetric and thin shell rigid and de-
formable bodies to both water and smoke. Our examples were sim-
ulated in parallel on from four to sixteen processors across a num-
ber of four processor Opteron machines and took anywhere from
a few minutes per frame to several hours in some extremely high
velocity cases. The solid was simulated on a single processor and
the fluid was split up across the remaining processors. Figures 3
and 7 demonstrate coupling to rigid bodies with varying density
ratios. Figure 8 shows a volumetric deformable object coupled to
water. Figures 9, 10 and 11 show cloth coupled to water. Figure 12
shows stability under high tension and high velocities and coupling
of cloth to smoke. Figures 7 and 6 show scalability to large num-
bers of objects. Figure 2 shows interaction between volumetric and
thin shell rigid bodies and water. Figure 13 offers an example of
the potential for combining our method with other state-of-the-art
simulation techniques.



10 Future Work

Our method for time integration requires the solids and fluids to
take the same time step and thus for stiff solids it would be ben-
eficial to apply asynchronous or robust and efficient fully implicit
methods. This is a promising area for future work. As noted in
Section 6.1, solving our symmetric indefinite system is similar to
implicitly integrating the well-studied Stokes equations, and thus
by casting our equations into similar form we hope to draw on ex-
perience from that literature. A promising idea that we have not
yet investigated is to map only the normal velocity of the fluid in
the dual cell to the Lagrangian solid, while keeping the tangential
portion of the velocity on the Eulerian grid to model better slip
boundary conditions.
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