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Figure 1: A dragon emits a flame, computed with the third order DSD equations coupled to the Navier-Stokes equations.

Abstract

We model flames and fire using the Navier-Stokes equations com-
bined with the level set method and jump conditions to model the
reaction front. Previous works modeled the flame using a combi-
nation of propagation in the normal direction and a curvature term
which leads to a level set equation that is parabolic in nature and
thus overly dissipative and smooth. Asymptotic theory shows that
one can obtain more interesting velocities and fully hyperbolic (as
opposed to parabolic) equations for the level set evolution. In par-
ticular, researchers in the field of detonation shock dynamics (DSD)
have derived a set of equations which exhibit characteristic cellu-
lar patterns. We show how to make use of the DSD framework
in the context of computer graphics simulations of flames and fire
to obtain interesting features such as flame wrinkling and cellular
patterns.
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1 Introduction

While various researchers have considered physics-based simula-
tion of smoke and water, significantly fewer have considered fire
and explosions. Likewise, special effects companies have not dis-
seminated much information on physically based methods for fire
and explosions (e.g. [Lamorlette and Foster 2002], [Geiger et al.
2005] and [bin Zafar et al. 2004] based on [Nguyen et al. 2002]).
Since the physically based simulation of fire and explosions is use-
ful for obvious financial and safety reasons, more research is re-
quired in this area.

Researchers in the combustion community have struggled with the
modeling of flames and fire especially because of the complex na-
ture of the chemical reactions governing these phenomena. One
approach, initiated some time ago (see e.g. [Markstein 1964]), was
to develop asymptotic theory to model chemical reactions as if they
occurred across an infinitely thin surface resulting in a partial dif-
ferential equation called the G-equation. Later, numerical meth-
ods were proposed by [Osher and Sethian 1988] (although there
was earlier work by [Dervieux and Thomasset 1979; Dervieux and
Thomasset 1981]) for the simulation of surfaces which move with
a combination of normal velocity and curvature terms, basically
identical to the G-equation. [Nguyen et al. 2001] coupled the nu-
merical methods of [Osher and Sethian 1988] for the level set equa-
tion to the Navier-Stokes equations in order to model two-phase
incompressible flames. This model was shown to be applicable to
computer graphics simulations of fire and flames in [Nguyen et al.
2002].

Significant research has occurred in the combustion community
since [Markstein 1964] especially since modeling these thin reac-
tion fronts both theoretically and numerically is expensive requir-
ing methods for multiscale phenomena, significant computational
resources, etc. In fact, detonation as a form of combustion is one
of the driving problems for the acquisition and utilization of large
supercomputers by facilities such as Los Alamos and Livermore na-



Figure 2: Simulated smoked foils. Lighter regions correspond to a
slower flame speed, and the flame moves from left to right in each
figure. An initial sine wave perturbation is smoothed out by the first
order DSD equations (top) and the second order DSD equations
(middle), whereas interesting cellular patterns develop for the third
order DSD equations (bottom).

tional laboratories. A particularly interesting area of asymptotic re-
search is detonation shock dynamics [Yao and Stewart 1996; Aslam
et al. 1996] where researchers derived equations that admit cellular
patterns. DSD theory shows that the normal plus curvature driven
interface velocities used in [Nguyen et al. 2001; Nguyen et al. 2002]
result in smooth, diffuse flames which is obvious considering the
fact that curvature driven motion leads to a parabolic partial differ-
ential equation. The normal plus curvature driven interface velocity
is consistent with first order DSD theory, but DSD theory also con-
tains second and third order equations which are hyperbolic (not
parabolic) and thus not inherently diffusive. Note that hyperbolic
differential equations are computationally more efficient to simu-
late than their parabolic counterparts, because they possess a sig-
nificantly less restrictive CFL condition. More importantly, third
order DSD theory yields a set of partial differential equations that
produce complex time-coherent cellular patterns.

Although low speed fire and flames (i.e. deflagrations) differ in
many ways from their higher speed shock wave coupled counter-
parts (i.e. detonations), the highly intricate time-coherent cellular
patterns produced by DSD are visually compelling and thus the fo-
cus of our work. From the standpoint of computer graphics ap-
plications, obtaining a more interesting velocity for the level set
surface allows for more visually interesting fire and flames, while
low speed phenomena are still faithfully modeled with the incom-
pressible Navier-Stokes equations. Therefore, we extend the work
of [Nguyen et al. 2002] from the parabolic inherently smooth flame
velocities to the more interesting hyperbolic third order DSD ap-
proximations that yield cellular patterns and flame wrinkling.

2 Previous Work

Previous flame models in computer graphics include [Inakage 1989;
Perry and Picard 1994; Chiba et al. 1994; Stam and Fiume 1995;

Figure 3: Four images from the time evolution of a level set sur-
face using the third order DSD equations. Note that the Navier-
Stokes equations are not used in this example, rather it illustrates
that the cellular patterns are produced by the DSD augmented level
set equations without the need for vorticity confinement or other
turbulence models.

Bukowski and Sequin 1997; Beaudoin et al. 2001; Melek and
Keyser 2002; Adabala and Hughes 2004]. In addition, simulation
of explosions was addressed in [Musgrave 1997; Mazarak et al.
1999; Neff and Fiume 1999; O’Brien and Hodgins 1999; Yngve
et al. 2000; Feldman et al. 2003; Geiger et al. 2003; Rasmussen
et al. 2003; Geiger et al. 2005]. Many authors have focused on the
rendering of fire and flames and we refer the interested reader to
[Rushmeier et al. 1995; Pegoraro and Parker 2006] for example. In
[Melek and Keyser 2003; Melek and Keyser 2005; Losasso et al.
2006a], fire was considered in the context of eroding solid objects,
and [Melek and Keyser 2006] also modeled the crumpling of solids
based on heat. Similarly, [Losasso et al. 2006b] simulated burning
liquids, and [Zhao et al. 2003] described a model for the propaga-
tion of fire along solid surfaces.

3 Flame Speed

We first consider the flame front velocities used in [Nguyen et al.
2002] which have the form

D = a−bκ (1)

where a and b are positive constants and κ is the local mean cur-
vature of the flame surface. Using the level set function φ , we
can define the local unit normal n = ∇φ/|∇φ | and the curvature
κ =−∇ ·n. The standard equation for level set evolution is

φt +w ·∇φ = 0, (2)

where w = ((un) f −D)n. The (un) f term denotes the normal ve-
locity of the unreacted fuel which we ignore for the rest of Sec-
tion 3, leaving the discussion of coupling to the Navier-Stokes equa-
tions to Section 4. When φ is a signed distance function, n = ∇φ ,
κ = −4φ , and setting a = 0 yields the parabolic heat (diffusion)
equation φt = b4φ , which smooths out detail on the flame surface.
Equation (2) can be made hyperbolic by setting b = 0, but still does
not produce interesting cellular patterns.

Classical detonation theory describes the velocity of a one-
dimensional steady detonation wave called the Chapman-Jouguet



Figure 4: A technical illustration of flame cores computed using
the full coupling of the DSD equations to the Navier-Stokes equa-
tions. The first order parabolic DSD equations are shown on the
left, while the third order DSD equations are shown on the right.
We used different colors to represent different flame speeds em-
phasizing the fact that the first order equations do not produce and
accentuate cellular patterns. Note that in the first order result, we
have set b = 0 removing the parabolic curvature term and used vor-
ticity confinement in order to get as much detail as possible, but
even so distinct cellular patterns are not generated.

(CJ) detonation. DSD augments this theory by considering devia-
tions in curvature from a planar Chapman-Jouguet detonation front
as well as unsteady detonations velocities, thus providing a fully
multidimensional detonation model. The important parameters are
the detonation speed D, its material derivatives (e.g. Ḋ and D̈) and
the geometry of the shock surface (e.g. κ and κ̇). The first order
relation, termed the D− κ relation, is given in equation (1). The
second order relation, Ḋ−D−κ , considers the first time derivative
of the detonation velocity via

Dt +w ·∇D = Ḋ (3)

Ḋ =−ακ +β (D−DCJ) (4)

where DCJ is the planar detonation velocity predicted by the one-
dimensional Chapman-Jouguet detonation theory.

While the second order DSD equations are hyperbolic, it is the
third order theory utilizing a D̈− Ḋ−D− κ̇ − κ relation which
results in a hyperbolic partial differential equation that generates
self-sustaining cellular patterns. The equations for third order DSD
theory are (see e.g. [Aslam 1996]),

Dt +w ·∇D = Ḋ (5)

Ḋt +w ·∇Ḋ = D̈(Ḋ,D, κ̇,κ) (6)

where κ̇ is the material derivative of the curvature κ̇ = κt +w ·∇κ .
These equations state that D and Ḋ are advected with the interface
velocity and integrated with the source terms on the right hand side.
Equation (5) is similar to equation (3) except that instead of obtain-
ing Ḋ from equation (4), equation (5) obtains it from equation (6).
The system of equations (2), (5) and (6) is closed by defining

D̈ =−c1α
2(D−DCJ)− c2αḊ− c3α

2LCJ − c4κ̇ (7)

α = eµθ(D−DCJ), LCJ = ln|1+ c5θκ/α|

where θ is the activation energy. The first two terms of equation
(7) are elastic and damping terms describing the oscillatory motion
of D about DCJ . The third term is a curvature forcing term which
accentuates the variations in curvature of the front. In particular,

Figure 5: These simulations correspond to those shown in Figure 4,
except that we render the smoke density field instead of illustrating
the flame core. Again, note the improved result using third order
DSD theory.

since κ > 0 corresponds to regions where D < DCJ , that term fur-
ther decelerates D, whereas regions with κ < 0 where D > DCJ are
accelerated. The last term involving κ̇ is a damping term.

Although the coefficients c1 to c5 and µ are functions of two
material-dependent parameters (namely the polytropic exponent of
the material and the Mach number of the Chapman-Jouguet deto-
nation), in practice one can tune them independently to carve the
desired cellular patterns in the flame. Furthermore, θ can be con-
sidered as a part of µθ and c5θ instead of an independent degree
of freedom. After setting DCJ to the desired base flame speed and
setting c1 and c2 for the desired elasticity and damping about DCJ ,
we found that tweaking the curvature forcing term, c3, gives us suf-
ficient control of the cellular patterns in terms of simulation detail.
The curvature damping term including c4 was essential for the deli-
cate control of cellular patterns for non-coupled simulations, but we
found it can be omitted for coupled simulations because the curva-
ture forcing term dominates. µθ was used to limit the deviation of
D from DCJ and c5θ determined the sensitivity of LCJ to curvature.
It was useful to normalize c5θ by ∆x when testing coefficients with
various grid resolutions. We present the simulation coefficients we
used in Table 3.

Each time step, we first advect φ , D, Ḋ and κ forward in time us-
ing the velocity field w ignoring source terms. Although special
techniques are typically used to evolve the level set equation, the
DSD related parameters D, Ḋ and κ can be treated more simply
with semi-Lagrangian advection or a higher order accurate vari-
ant [Stam 1999; Kim et al. 2006; Selle et al. 2007]. As is typical
the fast marching method can be used to maintain the signed dis-
tance property of φ , whereas the DSD related scalars need to be
extended constant normal to the interface. This extrapolation in the
normal direction is similar to the one-way extrapolation done for
the velocity field in [Enright et al. 2002]. To evaluate the source
terms, we first compute the new curvature field κn+1 = κ(φ n+1)
using the new value of the level set function. Then we compute
κ̇ = (κn+1 −κ?)/∆t where κ? is the value obtained by advecting
the time n curvature field forward in time. Next the source term D̈
is evaluated using κ̇ and the advected values of D, Ḋ, and κ (i.e. D?,
Ḋ? and κ?). That is, D̈ = D̈(D?, Ḋ?,κ?, κ̇). The advected value of
Ḋ is then augmented by ∆tD̈, and subsequently the advected value
of D is augmented by ∆tḊ. See Table 1 for pseudocode.

A widely used experimental technique for studying the cellular
structure exhibited by gaseous detonations is the smoked foil tech-
nique, in which a controlled detonation is carried out in a tube lined
with soot coated metal foil. As the detonation propagates through



Figure 6: Fireball generated by coupling the third order DSD equations to the Navier-Stokes equations.

the tube, the pressures generated leave an imprint on the foil. A
similar process can be simulated numerically using the DSD equa-
tions. Figure 2 is generated by recording the reaction speed as the
detonation front crosses over each grid point, moving from left to
right in the figures. Note the striking difference between the first,
second and third order DSD equations. While the initial pertur-
bations are smoothed out by the first and second order equations,
they persist and are amplified for the third order equations. Fig-
ure 3 shows the time evolution of a three-dimensional level set sur-
face using the third order DSD equations. Note that the complex
cellular patterns in Figure 2, bottom, and Figure 3 were obtained
using only equations (2), (5), (6) and (7) without any considera-
tion of the Navier-Stokes equations. The ability of DSD theory to
produce such interesting phenomena without the aid of the Navier-
Stokes equation is due to the fact that the equations themselves were
asymptotically derived from the Navier-Stokes equations.

4 Coupling with Navier-Stokes Equations

Now that we have demonstrated the ability of DSD theory to pro-
duce level set surfaces with interesting cellular patterns, in this sec-
tion we couple the level set/DSD evolution to the three-dimensional
Navier-Stokes equations as in [Nguyen et al. 2002]. The equations
for inviscid incompressible flow are given by

ut +(u ·∇)u+∇p/ρ = f (8)

along with the divergence-free condition ∇ ·u = 0, where u is the
velocity, p is the pressure, ρ is the density, and f denotes body
forces such as gravity, buoyancy and vorticity confinement. The
conversion of mass due to the reaction induces discontinuities in
pressure and normal velocity across the interface that must satisfy
interface jump conditions (derived through balancing the mass and
momentum flux across the interface) given by

[ρ(un−wn)] = 0 (9)

[ρ(un−wn)2 + p] = 0, (10)

where un = u ·n, wn = w ·n, and “[·]” denotes the jump across the
interface [Nguyen et al. 2001]. Since ρ is discontinuous across the
interface, these equations imply that un and p are discontinuous as
well. To obtain accurate derivatives across interfaces with sub-grid
accuracy, discontinuous variables are extrapolated using continu-
ous variables based on their physical properties. See [Nguyen et al.
2002; Hong and Kim 2005; Losasso et al. 2006b] for implementa-
tion details.

To obtain a better temperature profile for both buoyancy and render-
ing, we additionally consider the jump condition implied by conser-
vation of energy

[e+(un−wn)2/2+ p/ρ] = 0 (11)

where e is the internal energy per unit mass. For a calorically per-
fect gas, de = cvdT where cv is the specific heat at constant volume
and T is the temperature. Integrating this relationship, setting the
arbitrary zero point energy to zero at 0K, one obtains e = cvT which
can be used to rewrite the jump condition as

[cvT +(un−wn)2/2+ p/ρ] = 0 (12)

noting that cv is different for the reacted and unreacted materials.

As a summary of the whole DSD algorithm, we present the pseu-
docode in Table 1 illustrating that the implementation is a simple
extension to [Nguyen et al. 2002]. The Navier-Stokes equations (8)
are solved exactly as in [Nguyen et al. 2002] except that w is defined
slightly differently in the sense that D is no longer defined by equa-
tion (1) but instead is defined by equations (5), (6) and (7). Equation
(5) is solved for D in the same way as equation (2) is solved for φ

except that there is a source term so it requires a separate step of
addition. That source term obeys equation (6) which is the same
advection as equation (2) for the level set as is the equation for κ .
Once again equation (6) has a source term which is evaluated and
added to Ḋ. Note that the values of Ḋ,D, κ̇,κ are plugged into the
source term in equation (6) via equation (7) which is evaluated by
simple arithmetic operations.

Figures 4, 5 and 6 illustrate the results obtained when coupling the
DSD equations to the full Navier-Stokes equations. In particular,
figures 4 and 5 contrast the differences between the first order DSD
equations and the third order DSD equations.

5 Examples

The examples presented were computed using the third order DSD
equations coupled to the Navier-Stokes equations. We used vortic-
ity confinement as in [Fedkiw et al. 2001] (vortex particles [Selle
et al. 2005] could also be used) in the fuel and product regions.
In order to extend the expanse of the fuel we advect particles that
act to increase the divergence in the fuel region as in [Feldman et al.
2003]. We use photon mapping for the fire lighting and a blackbody
radiation model for the fuel and gaseous products.



Figure 7: Fire propagates through a gaseous fuel in the shape of a bunny.

Main Loop( )
{

Update D With DSD(. . . );
Previous Fire Simulator(. . . ,D); //[Nguyen et al. 2002]

}

Update D With DSD(. . . )
{

//[Stam 1999; Kim et al. 2006; Selle et al. 2007]
Advect φ n,Dn, Ḋn,κn to get φ n+1,Dn+1, Ḋn+1,κ∗;

for(Interfacial Nodes)
{

κ̇ = (κn+1−κ∗)/∆t;
δ = Dn+1−DCJ ;
α = exp(µθ ∗δ );
LCJ = ln|1+ c5θ ∗κn+1/α|;

//Compute RHS of equation (6)
D̈ =−c1 ∗α2 ∗δ − c2 ∗α ∗ Ḋn+1− c3 ∗α2 ∗LCJ − c4 ∗ κ̇;

//Euler step of D and Ḋ
Ḋn+1+=D̈∗∆t;
Dn+1+=Ḋn+1 ∗∆t;

}
Extrapolate Dn+1, Ḋn+1,κn+1;

}

Table 1: Pseudocode for the DSD algorithm as an extension to the
previous fire simulator of [Nguyen et al. 2002].

Figure 1 depicts fire emanating from a dragon. We rendered the
smoke in a dark fashion to accentuate the time-coherent cellular
patterns. In Figure 7, we begin with an initial gaseous fuel density
in the shape of a bunny. Then, the fuel is ignited at a point and
the flame propagates consuming the fuel. Note that this was ac-
complished with a level set by seeding a product level set near the
bunny’s tail and only setting a non-zero flame velocity near regions
of high fuel density. That is, while one side of the level set still cor-
responds to products, the other side corresponds to both fuel and
non-fuel air with a non-zero flame velocity only near the fuel.

All examples were run on a number of 4 processor 2.6 GHz Opteron

machines and timing results are presented in Table 2. The DSD
times include level set advection and reinitialization and account for
only a few percent of the computational cost. Note that the source
terms on the right hand side of equations (5) and (6) integrated with
the explicit Euler method posed no stability issues with reasonable
CFL numbers.

6 Conclusion

In this paper we focused on a method for generating improved ve-
locities for a level set representation of the flame front. Using DSD
theory we were able to promote and sustain cellular patterns in our
flames obtaining new visual phenomena for computer graphics gen-
erated fire.
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