Use the command `diary` to record your answers and submit them. Submit code for the functions and scripts you write. Submit any figures.

1. (50 points) Recursive functions. Given as input a list of integers, positive or negative, return the list sorted from smallest to largest. Do this by writing your own implementation of merge sort, an algorithm for sorting a list. Merge sort is based on a merge step, where given two lists, each individually sorted, they are merged into one sorted list.

 (a) Write a function `MergeLists` that takes as input two sorted lists `list1`, `list2`, and returns as output `mergedList`. For example

   ```
   >> MergeLists([1, 4, 6], [-1, 2, 3, 4, 5, 6])
   ans =
       -1   1   2   3   4   4   5   6   6
   ```

 (b) Write the recursive sorting algorithm `MergeSort` which takes as input the unsorted list `list` and returns as output the sorted list `sortedList`. Merge sort works as follows. If the input list has only one element, it returns the input list. Otherwise, it splits the input list in two approximately equal sublists, calls `MergeSort` recursively on each sublist, and then calls `MergeLists` to merge the two sorted sublists. Your function should satisfy the following test cases:

   ```
   >> MergeSort([1])
   ans =
       1
   >> MergeSort([-2 3 10 3 -8 -6 8 0 9 9])
   ans =
       -8  -6   -2    0    3    3    8    9    9  10
   >> MergeSort([-12 3 6 6 -1 -1 -1 -11 1 -14])
   ans =
       -14   -12   -11    -1    -1    -1    1    3    6    6
   ```

 (c) Compare the performance of your `MergeSort` with Matlab’s function `sort`. Make two plots showing list length vs. run time for both implementations, with lists of length up to 1 million elements. You can call the functions on random integer lists generated using `randi`, and use the functions `tic` and `toc` to time the sorting algorithms.

2. (50 points) Newton’s Method. Recall that Newton’s method can be used to find roots of a function. It starts with an initial guess x_0, and proceeds iteratively. In particular, given the current value for the root x_k, Newton’s method generates a better value by solving

 $$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

 where f' is the first derivative of f.

 (a) Write a generic implementation of Newton’s method `NewtonsMethod` that takes as input a handle to the function f, a handle to the first derivative function f', an initial guess and a stopping threshold ϵ, and returns as output the final iterate x_k. Newton’s method iterates until $|f(x_k)| < \epsilon$. Make the initial guess and stopping threshold optional, with default values of 0 and 10^{-5}, respectively. Allow a maximum of 100 iterations, even if the stopping criterion hasn’t been met. Output a warning if the maximum number of iterations was computed and the method did not converge. Test your function on some of Matlab’s built-in math functions, as follows.
\[
\begin{align*}
\text{>> } & \text{NewtonsMethod('sin','cos',pi/2+.1)} \\
& \text{ans =} \\
& \quad 12.5664 \\
\text{>> } & \text{NewtonsMethod(@cos,@(x) -sin(x),pi/2+.1)} \\
& \text{ans =} \\
& \quad 1.5708
\end{align*}
\]

(b) Let \(f(x) = x^2 - 2 \). On the command line, set the variable \text{myPoly} to be a function handle for an anonymous function implementing \(f \), and set the variable \text{myPolyDeriv} to be a function handle for an anonymous function implementing \(f' \). Run the following command:

\[
\begin{align*}
\text{>> } & \text{NewtonsMethod(myPoly,myPolyDeriv,.1,10^-7)} \\
& \text{ans =} \\
& \quad 1.4142
\end{align*}
\]

Do the same for \(f(x) = x^5 - x + 1 \).

\[
\begin{align*}
\text{>> } & \text{NewtonsMethod(myPoly,myPolyDeriv,.1)} \\
& \text{Warning: did not converge in 100 iterations} \\
& \text{ans =} \\
& \quad 1.000257561949280
\end{align*}
\]