1. (50 points) Recursive functions. Given as input a list of integers, positive or negative, return the list sorted from smallest to largest. Do this by writing your own implementation of *merge sort*, an algorithm for sorting a list. Merge sort is based on a merge step, where given two lists, each individually sorted, they are merged into one sorted list.

(a) Write a function `MergeLists` that takes as input two sorted lists `list1`, `list2`, and returns as output `mergedList`. For example

```matlab
>> MergeLists([1, 4, 6], [-1, 2, 3, 4, 5, 6 ])
ans =
  -1    1    2    3    4    4    5    6    6
```

(b) Write the recursive sorting algorithm `MergeSort` which takes as input the unsorted list `list` and returns as output the sorted list `sortedList`. Merge sort works as follows. If the input list has only one element, it returns the input list. Otherwise, it splits the input list in two approximately equal sublists, calls `MergeSort` recursively on each sublist, and then calls `MergeLists` to merge the two sorted sublists. Your function should satisfy the following test cases:

```matlab
>> MergeSort([1])
an =
      1
>> MergeSort([-2  3  10  3 -8  -6  8  0  9  9])
an =
    -8  -6  -2    0    3    3    8    9    9    9
>> MergeSort([-12 3 6 6 -1 -1 -1 -11 1 -14 ])
an =
    -14  -12  -11  -1  -1  -1    1    3    6    6
```

(c) Compare the performance of your `MergeSort` with Matlab’s function `sort`. Make two plots showing list length vs. run time for both implementations, with lists of length up to 1 million elements. You can call the functions on random integer lists generated using `randi`, and use the functions `tic` and `toc` to time the sorting algorithms.

2. (50 points) Newton’s Method. Recall that Newton’s method can be used to find roots of a function. It starts with an initial guess x_0, and proceeds iteratively. In particular, given the current value for the root x_k, Newton’s method generates a better value by solving

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

where f' is the first derivative of f.

(a) Write a generic implementation of Newton’s method `NewtonsMethod` that takes as input a handle to the function f, a handle to the first derivative function f', an initial guess and a stopping threshold ϵ, and returns as output the final iterate x_k. Newton’s method iterates until $|f(x_k)| < \epsilon$. Make the initial guess and stopping threshold optional, with default values of 0 and 10^{-5}, respectively. Allow a maximum of 100 iterations, even if the stopping criterion hasn’t been met. Output a warning if the maximum number of iterations was computed and the method did not converge. Test your function on some of Matlab’s built-in math functions, as follows.
Newton's Method

```matlab
>> NewtonsMethod('sin','cos',pi/2+.1)
anst = 12.5664
>> NewtonsMethod(@cos,@(x) -sin(x),pi/2+.1)
anst = 1.5708
```

(b) Let \(f(x) = x^2 - 2 \). On the command line, set the variable `myPoly` to be a function handle for an anonymous function implementing \(f \), and set the variable `myPolyDeriv` to be a function handle for an anonymous function implementing \(f' \). Run the following command:

```matlab
>> NewtonsMethod(myPoly,myPolyDeriv,.1,10^-7)
anst = 1.4142
```

Do the same for \(f(x) = x^3 + 3x^2 + 1 \).

```matlab
>> NewtonsMethod(myPoly,myPolyDeriv,.1)
Warning: did not converge in 100 iterations
ans = -3.1038
```