There are limits to geometric modeling

Although modern GPUs can render millions of triangles/sec, that’s not enough sometimes...

http://www.beinteriorddecorator.com
Use texture mapping to increase realism through detail

This image is just 8 polygons!

Add visual complexity.

http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/r_wolfe_mapping_1.htm
Example

Geometry

With texture

Angel and Shreiner 2012
Example

Pixar - Toy Story
Store 2D images in buffers and lookup pixel reflectances

Textures can be anything that you can lookup values in -- photo, procedurally generated, or even a function that computes a value on the fly
3D solid textures

Dong et al., 2008
Other uses of textures...

Light maps
Shadow maps
Environment maps
Bump maps
Opacity maps

Angel and Shreiner 2012
Texture advection

Jos Stam, “Stable Fluids,” SIGGRAPH 99
Texture mapping in the OpenGL pipeline

- Geometry and pixels have separate paths through pipeline
- meet in **fragment processing** - where textures are applied
- texture mapping applied at end of pipeline - efficient since relatively few polygons get past clipper
UV Mapping

- Texture is parameterized by \((u,v)\)
- Assign polygon vertices texture coordinates
- Interpolate within polygon

Texture coordinates are per-vertex data – a position in the \((u,v)\) space can interpolate tex coordinates with barycentric coordinates
The major issues in texture mapping...

- What should the actual mapping be?

easy: rectangular surface
harder: parametric surface

Teapot: Which image looks better? The image on the left uses **object coordinates** in the texture mapping – this makes more sense. The image on the right uses **world coordinates** – texture ends up changing relative to the object. **Want a nice map that doesn’t look distorted**
Is it simple?

• Although the idea is simple---map an image to a surface---there are 3 or 4 coordinate systems involved.
Texture Mapping

- Parametric coordinates
 - May be used to model curves and surfaces
- Texture coordinates
 - Used to identify points in the image to be mapped
- Object or World Coordinates
 - Conceptually, where the mapping takes place
- Window Coordinates
 - Where the final image is really produced
Mapping Functions

• Basic problem is how to find the maps

• Consider mapping from texture coordinates to a point a surface

• Appear to need three functions
 \[x = x(s,t) \]
 \[y = y(s,t) \]
 \[z = z(s,t) \]

• But we really want
to go the other way
Backward Mapping

• We really want to go backwards
 - Given a pixel, we want to know to which point on an object it corresponds
 - Given a point on an object, we want to know to which point in the texture it corresponds

• Need a map of the form
 \[s = s(x,y,z) \]
 \[t = t(x,y,z) \]

• Such functions are difficult to find in general
Given a point on the object \((x,y,z)\), what point \((u,v)\) in the texture we use?
Example: planar mapping
Intermediate surfaces

First map the texture to a simpler, intermediate surface
Cylindrical mapping

$$(x,y,z) \rightarrow (\theta, h) \rightarrow (u,v)$$

- note “pie slice” phenomena
- which coordinate axis is parallel to the cylinder axis?
Spherical Mapping

\[(x, y, z) \rightarrow (\text{latitude}, \text{longitude})\]
\[-\rightarrow (u, v)\]

spherical map stretches squares at equator and squeezes squares at poles
Box Mapping

- similar to planar mapping
- planar projection -- choose which plane to project onto
How do we map between intermediate and actual objects?

We associated (x,y,z) on the intermediate object with the texture (u,v). But which point on the actual object is this?

We choose both the intermediate shape and the mapping from the actual shape to the intermediate shape

1. a point on the object relative to its bounding box
2. see where surface normal intersects intermediate surface
3. shoot ray from centroid through surface point to intermediate surface
4. use the reflection vector (depends on the viewer position and normal)
How do we map between intermediate and actual objects?

Can you tell what intermediate shape was used?
Comparison

Cylindrical

Spherical
What intermediate shape was used here?
Parametric Surfaces

32 parametric patches
3D solid textures

can map object \((x,y,z)\) directly to texture \((u,v,w)\)
Procedural textures

e.g., Perlin noise
Texturing triangles

• Based on parametric texture coordinates
• `glTexCoord*()` specified at each vertex

![Diagram showing texture mapping and parameterization](image.png)
Interpolation

For polygonal mesh, want to assign \((u,v)\) to vertices

OpenGL uses interpolation to find proper texels from specified texture coordinates

Can be distortions

- Good selection of tex coordinates
- Poor selection of tex coordinates
- Texture stretched over trapezoid showing effects of bilinear interpolation
Multitexturing
Magnification and Minification

texels applied to 3D polygon

grid of pixels on screen

Minification

Magnification
Magnification and Minification

More than one texel can cover a pixel (*minification*) or more than one pixel can cover a texel (*magnification*).

Can use point sampling (nearest texel) or linear filtering (2 x 2 filter) to obtain texture values.
Texture Sampling
Point Sampling

Map back to texture image and use the nearest texel
Aliasing

Point sampling of the texture can lead to aliasing artifacts.

point samples in (or x,y,z) space

miss blue stripes

point samples in texture space
We apply **filtering** to reduce aliasing artifacts
A better but slower option is to use **area averaging**

Note that **preimage** of pixel is curved
Use bilinear filtering

p = ?

smoothes out the texture – no sharp boundaries
Mipmapping

Reduce minification artifacts
Prefilter the texture to obtain reduced resolutions
Requires 1/3 more space
Get a texture hierarchy indexed by level

128×128, 64×64, 32×32, 16×16, 8×8, 4×4, 2×2, 1×1
point sampling

mipmapped point sampling

linear filtering

mipmapped linear filtering