
CS230 : Computer Graphics
Lecture 3: Rasterization

Tamar Shinar
Computer Science & Engineering

UC Riverside

Rendering approaches

1. object-oriented

foreach object ...

2. image-oriented

foreach pixel ...

vertices image3D rendering
pipeline

there’s more than one way to do object-oriented rendering - e.g., OpenGL graphics
pipeline vs. Renderman

Outline

rasterization - make fragments from clipped objects

clipping - clip objects to viewing volume

hidden surface removal - determine visible fragments

What is rasterization?

Rasterization is the process of determining
which pixels are “covered” by the primitive

What is rasterization?

• input: primitives, output: fragments

• enumerate the pixels covered by a primitive

• interpolate attributes across the primitive

- output 1 fragment per pixel covered by the primitive

6

Rasterization

Compute integer coordinates for pixels near the
 2D primitives

Algorithms are invoked many, many times and
so must be efficient

Output should be visually pleasing, for example,
lines should have constant density

Obviously, they should be able to draw all
possible 2D primitives

Screen coordinates

we’ll assume stuff has been converted to normalized device coordinates

Line drawing

Which pixels should be used
to approximate a line?

Draw the thinnest possible
line that has no gaps

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

draw pixels from left to right, occasionally move up

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

draw pixels from left to right, occasionally move up

Use the midpoint between the
two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:
<whiteboard>

<whiteboard>: work out the implicit line equation in terms of X0 and X1
Question: will f(x,y+1/2) be > 0 or < 0?

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:

this means midpoint is above the line -> line is closer to bottom pixel

Line drawing algorithm
(case: 0 < m <= 1)

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

can now fill in the condition

We can make the Midpoint
Algorithm more efficient

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

by making it incremental
in the last step, we computed f(x,y+1/2) or f(x,y-1/2)

We can make the Midpoint
Algorithm more efficient

we need to use one of these two update rules
which one?

We can make the Midpoint
Algorithm more efficient

y = y0
d = f(x0+1,y0+1/2)
for x = x0 to x1 do
 draw(x,y)
 if (d<0) then
 y = y+1
 d = d+(y0-y1)+(x1-x0)
 else
 d = d+(y0-y1)

algorithm is incremental and uses only integer arithmetic

Adapt Midpoint Algorithm for
other cases

Adapt Midpoint Algorithm for
other cases

Adapt Midpoint Algorithm for
other cases

Line drawing references

• the algorithm we just described is the Midpoint Algorithm
(Pitteway, 1967), (van Aken and Novak, 1985)

• draws the same lines as the Bresenham Line Algorithm
(Bresenham, 1965)

Triangle rasterization

Which pixels should be used
to approximate a triangle?

Triangle rasterization issues

How should we rasterize a
triangle?

Use Midpoint Algorithm for edges and fill in

How should we rasterize a
triangle?

Who should fill in shared edge?

but who should fill in pixels for a shared edge?

How should we rasterize a
triangle?

Who should fill in shared edge?

give to triangle that contains pixel center
- but we have some ties
why can’t neither/both triangles draw the pixel?
we went a unique assignment

barycentric coordinates

barycentric coordinates

What are ?

<whiteboard>

We can interpolate attributes
using barycentric coordinates

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Gouraud shading
(Gouraud, 1971)

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Triangle rasterization algorithm

for all x do
 for all y do
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm

for all x do
 for all y do
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

the rest of the algorithm is to make the steps in red more efficient

Triangle rasterization algorithm

for x in [x_min, x_max]
 for y in [y_min, y_max]
 compute for (x,y)
 if then

 drawpixel(x,y) with color c

use a bounding rectangle

Triangle rasterization algorithm

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

<whiteboard>

<whiteboard> : computing alpha, beta, and gamma

Triangle rasterization algorithm

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then

 drawpixel(x,y) with color c

Optimizations?

1. can make computation of bary. coords. incremental
- f(x,y) = Ax+By+C
- f(x+1,y) = f(x,y) + A
2. color computation can also be made incremental
3. alpha > 0 and beta > 0 and gamma > 0 (if true => they are also less than one)

for x in [x_min, x_max]
 for y in [y_min, y_max]

 if then
 if then

 drawpixel(x,y) with color c

Triangle rasterization algorithm
dealing with shared triangle edges

- compute f_12(r), f_20(r) and f_01(r) and make sure r doesn’t hit a line

