CS230 : Computer Graphics Lecture 3: Rasterization

Tamar Shinar
Computer Science \& Engineering
UC Riverside

Rendering approaches

I. object-oriented
foreach object ...
2. image-oriented
foreach pixel ...

Outline

rasterization - make fragments from clipped objects clipping - clip objects to viewing volume
hidden surface removal - determine visible fragments

What is rasterization?

Rasterization is the process of determining which pixels are "covered" by the primitive

What is rasterization?

- input: primitives, output: fragments
- enumerate the pixels covered by a primitive
- interpolate attributes across the primitive
- output 1 fragment per pixel covered by the primitive

Rasterization

Compute integer coordinates for pixels near the 2D primitives

Algorithms are invoked many, many times and so must be efficient

Output should be visually pleasing, for example, lines should have constant density

Obviously, they should be able to draw all possible 2D primitives

Screen coordinates

Line drawing

Which pixels should be used to approximate a line?

Draw the thinnest possible line that has no gaps

Line drawing algorithm (case: $0<m<=1$)

$$
\begin{array}{|l|}
\hline y=y 0 \\
\text { for } x=x 0 \text { to } x I \text { do } \\
\quad \operatorname{draw}(x, y) \\
\text { if }(<\text { condition> }) \text { then } \\
\quad y=y+1
\end{array}
$$

- move from left to right -choose between $(x+I, y)$ and $(x+I, y+I)$

Line drawing algorithm (case: $0<m<=$ I)

$$
\begin{array}{|l}
y=y 0 \\
\text { for } x=x 0 \text { to } x I \text { do } \\
\text { draw }(x, y) \\
\text { if }(<\text { condition }>) \text { then } \\
y=y+1
\end{array}
$$

- move from left to right

-choose between

$$
(x+1, y) \text { and }(x+I, y+I)
$$

Use the midpoint between the two pixels to choose

If the line falls below the midpoint, use the bottom pixel
if the line falls above the midpoint, use the top pixel

Use the midpoint between the two pixels to choose

implicit line equation:

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

<whiteboard>
evaluate f at midpoint:

$$
f\left(x, y+\frac{1}{2}\right) ? 0
$$

Use the midpoint between the two pixels to choose

implicit line equation:

$$
f(\mathbf{X})=\mathbf{N} \cdot\left(\mathbf{X}-\mathbf{X}_{0}\right)=0
$$

evaluate f at midpoint:

$$
f\left(x, y+\frac{1}{2}\right)>0
$$

Line drawing algorithm (case: $0<m<=$ I)

$$
\begin{aligned}
& \mathbf{y}=\mathbf{y} \mathbf{0} \\
& \text { for } \mathbf{x}=\mathbf{x} 0 \text { to } \mathbf{x} \mathbf{I} \text { do } \\
& \mathbf{d r a w}(\mathbf{x}, \mathbf{y}) \\
& \text { if }\left(f\left(x+1, y+\frac{1}{2}\right)<0\right) \text { then } \\
& \quad \mathbf{y}=\mathbf{y}+\mathbf{1}
\end{aligned}
$$

We can make the Midpoint Algorithm more efficient

$$
\begin{array}{|l|}
\hline \mathbf{y}=\mathbf{y} 0 \\
\text { for } \mathbf{x}=\mathbf{x} \mathbf{0} \text { to } \mathbf{x I} \text { do } \\
\quad \operatorname{draw}(\mathbf{x}, \mathbf{y}) \\
\text { if }\left(f\left(x+1, y+\frac{1}{2}\right)<0\right) \text { then } \\
\quad \mathbf{y}=\mathbf{y}+\mathbf{1}
\end{array}
$$

We can make the Midpoint Algorithm more efficient

$$
f\left(x+1, y+\frac{1}{2}\right)<0
$$

$$
f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

$$
\bigcirc \quad f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

$$
\bigcirc f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

We can make the Midpoint Algorithm more efficient

$$
\begin{aligned}
& y=y 0 \\
& d=f(x 0+1, y 0+1 / 2) \\
& \text { for } x=x 0 \text { to } x l \text { do } \\
& \operatorname{draw}(x, y) \\
& \text { if }(\mathrm{d}<0) \text { then } \\
& y=y+1 \\
& d=d+(y 0-y l)+(x I-x 0) \\
& \text { else } \\
& d=d+(y 0-y l) \\
& \begin{aligned}
\mathrm{O} \quad f(x+1, y) & =f(x, y)+\left(y_{0}-y_{1}\right) \\
\bigcirc \quad f(x+1, y+1) & =f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
\end{aligned}
\end{aligned}
$$

algorithm is incremental and uses only integer arithmetic

Adapt Midpoint Algorithm for other cases

Adapt Midpoint Algorithm for other cases

Adapt Midpoint Algorithm for other cases

Line drawing references

- the algorithm we just described is the Midpoint Algorithm (Pitteway, 1967), (van Aken and Novak, I985)
- draws the same lines as the Bresenham Line Algorithm (Bresenham, 1965)

Triangle rasterization

Which pixels should be used to approximate a triangle?

Triangle rasterization issues

How should we rasterize a triangle?

Use Midpoint Algorithm for edges and fill in

How should we rasterize a triangle?

Who should fill in shared edge?

How should we rasterize a triangle?

Who should fill in shared edge?

give to triangle that contains pixel center

- but we have some ties
why can't neither/both triangles draw the pixel?
we went a unique assignment

barycentric coordinates

barycentric coordinates

$$
\begin{aligned}
& \mathbf{p}=f\left(\mathbf{p}_{\mathbf{0}}, \mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}\right) \\
& \mathbf{p}=\alpha \mathbf{p}_{\mathbf{0}}+\beta \mathbf{p}_{\mathbf{1}}+\gamma \mathbf{p}_{\mathbf{2}}
\end{aligned}
$$

What are (α, β, γ) ?
<whiteboard>
p_{0}

We can interpolate attributes using barycentric coordinates

$$
\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}
$$

Gouraud shading
(Gouraud, 1971)
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

Triangle rasterization algorithm

for all x do for all y do
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$ drawpixel(x, y) with color c

Triangle rasterization algorithm

for all x do
for all y do
compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$ drawpixel(x, y) with color c

Triangle rasterization algorithm

 use a bounding rectanglefor x in [$x _m i n, x _m a x$]
for y in [y_min, $\left.y _m a x\right]$

compute (α, β, γ) for (\mathbf{x}, \mathbf{y})
if $(\alpha \in[0,1]$ and $\beta \in[0,1]$ and $\gamma \in[0,1])$ then
$\mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2}$
drawpixel(x, y) with color c

Triangle rasterization algorithm

for x in [$\left.x _m i n, x _m a x\right]$ for y in [y_min, $y_{_}$max]

$$
\begin{aligned}
& \alpha=f_{12}(x, y) / f_{12}\left(x_{0}, y_{0}\right) \\
& \beta=f_{20}(x, y) / f_{20}\left(x_{1}, y_{1}\right) \\
& \gamma=f_{01}(x, y) / f_{01}\left(x_{2}, y_{2}\right) \\
& \text { if }(\alpha \in[0,1] \text { and } \beta \in[0,1] \text { and } \gamma \in[0,1]) \text { then } \\
& \quad \mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2} \\
& \quad \text { drawpixel }(\mathbf{x}, \mathbf{y}) \text { with color } \mathbf{c}
\end{aligned}
$$

<whiteboard>

Triangle rasterization algorithm

 Optimizations?for x in [$x _m i n, x _m a x$] for y in [y_min, $y_{_} \max$]

$$
\begin{aligned}
& \alpha=f_{12}(x, y) / f_{12}\left(x_{0}, y_{0}\right) \\
& \beta=f_{20}(x, y) / f_{20}\left(x_{1}, y_{1}\right) \\
& \gamma=f_{01}(x, y) / f_{01}\left(x_{2}, y_{2}\right) \\
& \text { if }(\alpha \in[0,1] \text { and } \beta \in[0,1] \text { and } \gamma \in[0,1]) \text { then } \\
& \quad \mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2} \\
& \quad \text { drawpixel }(\mathbf{x}, \mathbf{y}) \text { with color } \mathbf{c}
\end{aligned}
$$

1. can make computation of bary. coords. incremental
$-f(x, y)=A x+B y+C$
$-f(x+1, y)=f(x, y)+A$
2. color computation can also be made incremental
3. alpha >0 and beta >0 and gamma >0 (if true $=>$ they are also less than one)

Triangle rasterization algorithm

 dealing with shared triangle edges
for x in [$\left.x _m i n, x _m a x\right]$

for y in [y_min, $\left.y _m a x\right]$

$$
\alpha=f_{12}(x, y) / f_{12}\left(x_{0}, y_{0}\right)
$$

$$
\beta=f_{20}(x, y) / f_{20}\left(x_{1}, y_{1}\right)
$$

$$
\gamma=f_{01}(x, y) / f_{01}\left(x_{2}, y_{2}\right)
$$

$$
\text { if (} \alpha \geq 0 \text { and } \beta \geq 0 \text { and } \gamma \geq 0 \text {) then }
$$

- compute f_12(r), f_20(r) and f_01(r) and make sure r doesn't hit a line

$$
\begin{aligned}
& \text { if }\left(\alpha>0 \text { or } f_{12}\left(\mathbf{p}_{0}\right) f_{12}(\mathrm{r})>0\right) \text { and } \text { then } \\
& \left(\beta>0 \text { or } f_{20}\left(\mathbf{p}_{1}\right) f_{20}(\mathbf{r})>0\right) \text { and } \\
& \left(\gamma>0 \text { or } f_{01}\left(\mathbf{p}_{2}\right) f_{01}(\mathbf{r})>0\right) \\
& \mathbf{c}=\alpha \mathbf{c}_{0}+\beta \mathbf{c}_{1}+\gamma \mathbf{c}_{2} \\
& \text { drawpixel(} x, y \text {) with color c }
\end{aligned}
$$

