Homework 3
 CS 210

Question	Points	Score
1	8	
2	6	
3	8	
4	8	
5	14	
6	14	
7	14	
8	14	
9	14	
Total	100	

Linear Systems

1. For each of the following statements, indicate whether the statement is true or false.
\mathbf{T} / \mathbf{F} If a matrix A is singular, then the number of solutions to the linear system $A \mathbf{x}=\mathbf{b}$ depends on the particular choice of right-hand-side \mathbf{b}.
\mathbf{T} / \mathbf{F} If a matrix A is nonsingular, then the number of solutions to the linear system $A \mathbf{x}=\mathbf{b}$ depends on the particular choice of right-hand-side \mathbf{b}.
\mathbf{T} / \mathbf{F} If a matrix has a very small determinant, then the matrix is nearly singular.
\mathbf{T} / \mathbf{F} If any matrix has a zero on its main diagonal, then it is necessarily singular.
2. Can a system of linear equations $A \mathbf{x}=\mathbf{b}$ have exactly two solutions? Explain your answer.

LU Factorization and Gaussian Eliminiation

3. For each of the following statements, indicate whether the statement is true or false.
\mathbf{T} / \mathbf{F} If a triangular matrix has a zero on its main diagonal, then it is necessarily singular.
\mathbf{T} / \mathbf{F} The product of two upper triangular matrices is upper triangular.
\mathbf{T} / \mathbf{F} If a linear system is well-conditioned, then pivoting is unnecessary in Gaussian elimination.
\mathbf{T} / \mathbf{F} Once the LU factorization of a matrix has been computed to solve a linear system, then subsequent linear systems with the same matrix but different right-hand-side vectors can be solved without refactoring the matrix.
4. (T\&B 20.2) Suppose $A \in \mathbb{R}^{n \times n}$ has an $L U$ factorization. Suppose that A is banded with bandwidth $2 p+1$, i.e., $a_{i j}=0$ for $|i-j|>p$. What can you say about the sparsity patterns of the factors L and U of A ? Explain.
5. Consider $L U$ factorization with partial pivoting of the matrix A which computes

$$
M_{n-1} P_{n-1} \cdots M_{3} P_{3} M_{2} P_{2} M_{1} P_{1} A=U
$$

where P_{i} is a row permutation matrix interchanging rows i and $j>i$.
(a) Show that the matrix $P_{3} P_{2} M_{1} P_{2}^{-1} P_{3}^{-1}$ has the same structure as the matrix M_{1}.
(b) Explain how the above expression is transformed into the form $P A=L U$, where P is a row permutation matrix.

Cholesky Factorization

6. (Heath 2.37) Suppose that the symmetric $(n+1) \times(n+1)$ matrix

$$
B=\left(\begin{array}{cc}
\alpha & \mathbf{a}^{T} \\
\mathbf{a} & A
\end{array}\right)
$$

is positive definite.
(a) Show that the scalar α must be positive and the $n \times n$ matrix A must be positive definite.
(b) What is the Cholesky factorization of B in terms of α, a, and the Cholesky factorization of A ?

Singular Value Decomposition

7. (T\&B 4.1) Determine SVDs of the following matrices (by hand calculation):
(a) $\left(\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right)$,
(b) $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$,
(c) $\left(\begin{array}{ll}0 & 2 \\ 0 & 0 \\ 0 & 0\end{array}\right)$,
(d) $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$,
(e) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
8. Let A be an $m \times n$ singular matrix of rank r with SVD

$$
\begin{aligned}
& A=U \Sigma V^{T}=\left(\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \ldots \mid \mathbf{u}_{m}\right)\left(\begin{array}{ccccc}
\sigma_{1} & & & & \\
& \ddots & & & \\
\\
& & \sigma_{r} & & \\
\\
& & & 0 & \\
& & & & \\
& & \\
\left.\frac{\mathbf{v}_{1}^{T}}{\frac{\mathbf{v}_{2}^{T}}{\vdots}}\right) \\
\mathbf{v}_{n}^{T}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\hat{U} & \tilde{U}
\end{array}\right)\left(\begin{array}{cccccc}
\sigma_{1} & & & & & \\
& \ddots & & & \\
& & \sigma_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)\binom{\hat{V}^{T}}{\tilde{V}^{T}}
\end{aligned}
$$

where $\sigma_{1} \geq \ldots \geq \sigma_{r}>0, \hat{U}$ consists of the first r columns of U, \tilde{U} consists of the remaining $m-r$ columns of U, \hat{V} consists of the first r columns of V, and \tilde{V} consists of the remaining $n-r$ columns of V. Give bases for the spaces range (A), null (A), range $\left(A^{T}\right)$ and null $\left(A^{T}\right)$ in terms of the components of the SVD of A, and a brief justification.
9. Show that for an $m \times n$ matrix of full column rank n, the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is an orthogonal projector onto range (A). Hint: use the SVD of A.

