Homework 3 CS 210

Question	Points	Score
1	8	
2	6	
3	8	
4	8	
5	14	
6	14	
7	14	
8	14	
9	14	
Total	100	

Linear Systems

- 1. For each of the following statements, indicate whether the statement is true or false.
 - \mathbf{T}/\mathbf{F} If a matrix A is singular, then the number of solutions to the linear system $A\mathbf{x} = \mathbf{b}$ depends on the particular choice of right-hand-side \mathbf{b} .
 - \mathbf{T}/\mathbf{F} If a matrix A is nonsingular, then the number of solutions to the linear system $A\mathbf{x} = \mathbf{b}$ depends on the particular choice of right-hand-side \mathbf{b} .
 - T/F If a matrix has a very small determinant, then the matrix is nearly singular.

T/F If any matrix has a zero on its main diagonal, then it is necessarily singular.

2. Can a system of linear equations $A\mathbf{x} = \mathbf{b}$ have exactly two solutions? Explain your answer.

LU Factorization and Gaussian Eliminiation

- 3. For each of the following statements, indicate whether the statement is true or false.
 - T/F If a triangular matrix has a zero on its main diagonal, then it is necessarily singular.
 - T/F The product of two upper triangular matrices is upper triangular.
 - T/F If a linear system is well-conditioned, then pivoting is unnecessary in Gaussian elimination.
 - \mathbf{T}/\mathbf{F} Once the LU factorization of a matrix has been computed to solve a linear system, then subsequent linear systems with the same matrix but different right-hand-side vectors can be solved without refactoring the matrix.
- 4. (T&B 20.2) Suppose $A \in \mathbb{R}^{n \times n}$ has an LU factorization. Suppose that A is banded with bandwidth 2p + 1, i.e., $a_{ij} = 0$ for |i j| > p. What can you say about the sparsity patterns of the factors L and U of A? Explain.
- 5. Consider LU factorization with partial pivoting of the matrix A which computes

 $M_{n-1}P_{n-1}\cdots M_3P_3M_2P_2M_1P_1A = U$

where P_i is a row permutation matrix interchanging rows *i* and j > i.

- (a) Show that the matrix $P_3P_2M_1P_2^{-1}P_3^{-1}$ has the same structure as the matrix M_1 .
- (b) Explain how the above expression is transformed into the form PA = LU, where P is a row permutation matrix.

Cholesky Factorization

6. (Heath 2.37) Suppose that the symmetric $(n+1) \times (n+1)$ matrix

$$B = \begin{pmatrix} \alpha & \mathbf{a}^T \\ \mathbf{a} & A \end{pmatrix}$$

is positive definite.

- (a) Show that the scalar α must be positive and the $n \times n$ matrix A must be positive definite.
- (b) What is the Cholesky factorization of B in terms of α , **a**, and the Cholesky factorization of A?

Singular Value Decomposition

7. (T&B 4.1) Determine SVDs of the following matrices (by hand calculation):

(a)
$$\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$
, (b) $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, (c) $\begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$, (d) $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, (e) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

8. Let A be an $m \times n$ singular matrix of rank r with SVD

$$A = U\Sigma V^{T} = \begin{pmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \dots & \mathbf{u}_{m} \end{pmatrix} \begin{pmatrix} \sigma_{1} & \dots & \sigma_{r} &$$

where $\sigma_1 \geq \ldots \geq \sigma_r > 0$, \hat{U} consists of the first r columns of U, \tilde{U} consists of the remaining m - r columns of U, \hat{V} consists of the first r columns of V, and \tilde{V} consists of the remaining n - r columns of V. Give bases for the spaces range(A), null(A), range(A^T) and null(A^T) in terms of the components of the SVD of A, and a brief justification.

9. Show that for an $m \times n$ matrix of full column rank n, the matrix $A(A^T A)^{-1} A^T$ is an orthogonal projector onto range(A). Hint: use the SVD of A.