Homework 2 CS 210

Question	Points	Score
1	10	
2	20	
3	20	
4	25	
5	15	
6	10	
Total	100	

Matrix algebra

1. (Heath 2.4a) Show that the following matrix is singular.

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0\\ 1 & 2 & 1\\ 1 & 3 & 2 \end{array}\right)$$

- 2. (Trefethen&Bau 2.6) If **u** and **v** are *m*-vectors, the matrix $A = I + \mathbf{u}\mathbf{v}^T$ is known as a rank-one pertubation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1} = I + \alpha \mathbf{u}\mathbf{v}^T$ for some scalar α , and give an expression for α . For what **u** and **v** is A singular? If it is singular, what is null(A)?
- 3. (Heath 2.8) Let A and B be any two $n \times n$ matrices.
 - (a) Prove that $(AB)^T = B^T A^T$.
 - (b) If A and B are both non-singular, prove that $(AB)^{-1} = B^{-1}A^{-1}$.

Vector and matrix norms

4. Let $\mathbf{x} \in \mathbb{R}^n$. Two vector norms, $||\mathbf{x}||_a$ and $||\mathbf{x}||_b$, are *equivalent* if $\exists c, d \in \mathbb{R}$ such that

$$c||\mathbf{x}||_b \le ||\mathbf{x}||_a \le d||\mathbf{x}||_b.$$

Matrix norm equivalence is defined analogously to vector norm equivalence, i.e., $|| \cdot ||_a$ and $|| \cdot ||_b$ are equivalent if $\exists c, d$ s.t. $c||A||_b \leq ||A||_a \leq d||A||_b$.

(a) Let $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$. For each of the following, verify the inequality and give an example of a non-zero vector or matrix for which the bound is achieved (showing that the bound is tight):

i.
$$||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_{2}$$

ii. $||\mathbf{x}||_{2} \le \sqrt{n} ||\mathbf{x}||_{\infty}$
iii. $||A||_{\infty} \le \sqrt{n} ||A||_{2}$
iv. $||A||_{2} \le \sqrt{n} ||A||_{\infty}$
This shows that $||A||_{\infty}$

This shows that $||\cdot||_{\infty}$ and $||\cdot||_2$ are equivalent, and that their induced matrix norms are equivalent.

(b) Prove that the equivalence of two vector norms implies the equivalence of their induced matrix norms.

Sensitivity and conditioning

- 5. (Heath 2.58) Suppose that the $n \times n$ matrix A is perfectly well-conditioned, i.e., cond(A) = 1. Which of the following matrices would then necessarily share this same property?
 - (a) cA, where c is any nonzero scalar
 - (b) DA, where D is a nonsingular diagonal matrix
 - (c) PA, where P is any permutation matrix
 - (d) BA, where B is any nonsingular matrix
 - (e) A^{-1} , the inverse of A
 - (f) A^T , the transpose of A
- 6. Under what circumstances does a small residual vector $\mathbf{r} = \mathbf{b} A\mathbf{x}$ imply that \mathbf{x} is an accurate solution to the linear system $A\mathbf{x} = \mathbf{b}$?