1. (Heath 6.3) For each of the following functions, what do the first- and second- order optimality conditions say about whether 0 is a minimizer on \mathbb{R}?

 (a) $f(x) = x^2$
 (b) $f(x) = x^3$
 (c) $f(x) = x^4$
 (d) $f(x) = -x^4$

2. (Heath 6.4) Determine the critical points of each of the following functions and characterize each as a minimum, maximum, or inflection point. Also determine whether each function has a global minimum or maximum on \mathbb{R}.

 (a) $f(x) = x^3 + 6x^2 - 15x + 2$
 (b) $f(x) = 2x^3 - 25x^2 - 12x + 15$
 (c) $f(x) = 3x^3 + 7x^2 - 15x - 3$
 (d) $f(x) = x^2e^x$

3. (Heath 6.5) Determine the critical points of each of the following functions and characterize each as a minimum, maximum, or saddle point. Also determine whether each function has a global minimum or maximum on \mathbb{R}^2.

 (a) $f(x, y) = x^2 - 4xy + y^2$
 (b) $f(x, y) = x^4 - 4xy + y^4$
 (c) $f(x, y) = 2x^3 - 3x^2 - 6xy(x - y - 1)$
 (d) $f(x, y) = (x - y)^4 + x^2 - y^2 - 2x + 2y + 1$

4. (Heath 6.8) Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

 $$f(x) = \frac{1}{2}(x_1^2 - x_2)^2 + \frac{1}{2}(1 - x_1)^2.$$

 (a) At what point does f attain a minimum?
 (b) Perform one iteration of Newton’s method for minimizing f using as starting point $x_0 = (2, 2)^T$.
 (c) Explain whether this is a good or bad step and in what sense.
5. (Heath 6.9) Let \(f : \mathbb{R}^n \to \mathbb{R} \) be given by

\[
f(x) = \frac{1}{2} x^T A x - x^T b + c
\]

where \(A \) is an \(n \times n \) symmetric positive definite matrix, \(b \) is an \(n \)-vector, and \(c \) is a scalar.

(a) Show that Newton’s method for minimizing this function converges in one iteration from any starting point \(x_0 \).

(b) If the steepest descent method is used on this problem, what happens if the starting value \(x_0 \) is such that \(x_0 - x^* \) is an eigenvector of \(A \), where \(x^* \) is the solution?