Iterative Methods (Heath §11.5)

- Direct methods compute exact solution subject to rounding error.
- Can be too costly in storage and work for large systems.
- Iterative methods start with guess x_0 and improve until desired accuracy is achieved.

Several approaches based on fixed point iteration:

$$ M^{-1}x_{k+1} = Gx_k + c $$

Matrix G can be obtained by splitting $A = M - N$

$$ Mx_{k+1} = Nx_k + b $$

$$ x_{k+1} = M^{-1}Nx_k + M^{-1}b $$

$$ G(x) = M^{-1}N $$

Convergent if $\rho(M^{-1}N) < 1$

M is chosen so that it is easier to solve than A.
Jacobi Method

\[M = D \]
\[N = -(L+U) \]

\[D X^{(k+1)} = -(L+U)X^{(k)} + b \]
\[X^{(k+1)} = D^{-1}(b - (L+U)X^{(k)}) \]

Equation for a single component \(i \):

\[X_i^{(k+1)} = b_i - \sum_{j \neq i} a_{ij} X_j^{(k)} \]

\[\frac{1}{a_{ii}} \]

- Slow convergence usually
- Easy to parallelize

Gauss-Seidel

- Use updated values of \(X_j^{(k+1)} \) after they've been computed:

\[X_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j<i} a_{ij} X_j^{(k+1)} - \sum_{j>i} a_{ij} X_j^{(k)} \right] \]

- Equivalent to

\[(D+L)X^{(k+1)} = -U X^{(k)} + b\]
Gauss-Seidel (cont.)

- faster convergence than Jacobi
- sequential evaluation of $x_i^{(k+1)}$
- in-place update of x_i
Preconditioning

- improve condition # of a matrix

\[M \approx A, \text{ easier to solve } M \]

replace
\[Ax = b \]
with
\[M^{-1}Ax = M^{-1}b \]

Note that "M^{-1}" does not necessarily mean we compute the inverse of M.

Intuitively: stretch quadratic form to make it more spherical.
\[M = EE^T \implies M^{-1} = E^{-T}E^{-1} \]

\[M^{-1}Ax = M^{-1}b \]

\[E^{-T}E^T Ax = E^{-T}E^{-1}b \]

\[\implies (E^{-T}A E^{-T}) (E^T x) = E^{-1}b \]

\[\hat{A} \hat{x} = \hat{b} \]

Applying CG to the transformed equation, get terms with \(E^{-1} \). These can be eliminated to get the following PCG algorithm:

\[r_0 = b - Ax_0 \]

\[s_0 = M^{-1}r_0 \]

for \(k = 0, 1, 2, \ldots \)

\[\alpha_k = \frac{r_k^T M^{-1}r_k}{s_k^T A s_k} \]

\[x_{k+1} = x_k + \alpha_k s_k \]

\[r_{k+1} = r_k - \alpha_k A s_k \]

\[\beta_{k+1} = \frac{r_{k+1}^T M^{-1} r_{k+1}}{r_k^T M^{-1} r_k} \]

\[s_{k+1} = M^{-1} r_{k+1} + \beta_{k+1} s_k \]