
Floating Point

- Generally use floating point, which is a *finite precision* system
 - introduced *rounding* errors

- standard is IEEE 754 (1985)
 - adherence made numerical code more portable and reliable

- as opposed to fixed point : point is always after the 10^0 place
 1234.567
 1.3
 0.001
- floating point : point can "float"
 1.234567 * 10^3
 1.3 * 10^0
 1.0 * 10^-3

- General floating point system
 b base
 p number of digits of precision
 [U,L] exponent range

 b p L U field width
IEEE SP 2 23(+1)=24 -126 127 (1+8+23 = 32)
IEEE DP 2 52(+1)=53 -1022 1023 (1+11+52 = 64)

- Floating point number x

 (d0 + d1 + d2 + ... + d(p-1))
 x = +- (-- -- ------) * b^E
 (b b^2 b^(p-1))

 0 <= di <= b-1, i = 0, ... , p-1 (p digits)

 L <= E <= U

 mantissa: d0d1...d(p-1)
 exponent: E

Example 1 (1):

 b = 2
 p = 3
 L = -1
 U = 1

 start enumerating possibilities:
 +- m E
 +- 0.00 -1 -> 0
 +- 0.00 0 -> 0
 +- 0.00 +1 -> 0
 +- 0.01 -1 -> 0.001
 +- 0.01 0 -> 0.01
 +- 0.01 +1 -> 0.1
 +- 0.10 -1 -> 0.01
 +- 0.10 0 -> 0.1
 +- 0.10 +1 -> 1.0

 duplicates!
 In general, number of possibilities
 2 * b^p * (U - L + 1)
 but
 - lots of duplicates
 - non-unique representation

Normalization
- require the leading digit to be non-zero
- so mantissa, m
 1 <= m < b
- nice because:
 - representation is now *unique*
 - don't waste digits on any leading 0's
 - for binary base, leading digit must be 1
 - so don't need to store it, just assume number is 1.d1d2..dp
 - gain an extra bit of precision!

Properties
- finite and discrete system
- finite: how many (normalized) numbers can be represented?
count them:
2 * (b - 1) * b^(p-1) * (U - L + 1) + 1

- what's the smallest (positive) normalized number? or "underflow level (UFL)"

1.0 ... 0 * b^L = b^L

- what's the biggest normalized number? or "overflow level (OFL)"

(b-1).(b-1) ... (b-1) * b^U
 = (b - b^(-(p-1))) * b^U
 = (1 - b^(-p)) * b^(U+1)

Example 1 (2):

 b = 2
 p = 3
 L = -1
 U = 1

- number of normalized
2 * (b - 1) * b^(p-1) * (U - L + 1) + 1
 = 2 * (2 - 1) * 2^(3-1) * (1 - -1 + 1) + 1
 = 2 * 1 * 4 * 3 + 1
 = 25
- UFL
b^L
 = 2^-1
 = .5
- OFL
(1 - b^(-p)) * b^(U+1)
 = (1 - 2^(-3)) * 2^2
 = 3.5
PICTURE of representable numbers
- note evenly spaced only for a given exponent
 | | | | | | | ||||| | ||||| | | | | | | |
-4 -3 -2 -1 0 1 2 3 4

Subnormals
- normalized numbers: gap between 0 and b^L
- fill in by allowing denormalized or subnormal numbers
- can make use of capacity for non-normalized numbers by allowing leading 0's
- though precision won't be full precision, since have leading 0's

Example 1(3):

 | | | | | | | ||||||||||||||||| | | | | | | |
-4 -3 -2 -1 0 1 2 3 4

- allows 6 new numbers around 0
- new smallest number is (0.01)_2 ^ 2^-1 = (0.125)_10

- called "gradual underflow" because we gradually lose precision

- implementation: reserved value of exponent field
 - leading bit not stored

Exceptional values
- Inf
 - dividing finite number by 0
 - exceeding OFL
- NaN
 - undefined operation 0/0, Inf/Inf, 0*Inf
- implemented through reserved values of exponent field

