Conditioning and Stability

- Analogous concepts:
- Conditioning of a *problem* = sensitivity to data errors
- Stability of an *algorithm* = sensitivity to errors in computation

- Conditioning of a problem
- problem solution is @ map from input x to solution f(x)
- PICTURE: error/uncertainty in data (x*), and error in solution (f(x"))
- "backward error"  x - x*
- "forward error" f(x) - £(x")

- "well-conditioned" = insensitive
"ill-conditioned" = sensitive

- How to make this notion *quantitative*?
- ratio of relative forward error to relative backward error

rel. forward err. | £(x%) - £(x) | /| £(x) |
K = -
rel. backward err. | x*=-x |/ | x|

- rearranging, see that K acts like "amplification factor"
rel. forward err. = K * rel. backward err.

- ill-conditioned ---> large K
- well-conditioned ---> small K or K close to 1

- Usually what we can derive is an upper bound for K, so that we get bound on rel. forward err.

rel. forward err. <= K * rel. backward err.

f is differentiable, x* = x + dx

f(x + dx) - f(x) ~= dx f'(x)
-thenKis
[ax £1x) | /] £x) | | £ x|
K_f = =
[ax | /] x| | £ |

- so K_f depends on properties of f and value of x
- There's a relationship between cond# of problem and cond# of inverse problem
- Inverse problem of y = f(x) is find x s.t. f(x) = y, written x = fA-1(y) = g(y)

- S0

rel. forward err. |9ty =g | /] 9ty |

rel. backward err.

| £x™) - £(x) | /| £(x) | K

- Differentiable f(x), and g(y)
- g(f(x)) = xbydefn
-using chainrule, g' (£(x)) £'(x) = 1,s0g'=1/'

- so cond#
| g'(v) v | | 1787 (x) £(x) | 1
Kg= = = o
| 9y | (N K £
- Lesson:

- If K_f near 1, both f and g well-conditioned
- If K_f big or small, either K_f or K_g ill-conditioned

- Side note: Above is "relative cond#". If seeing x* s.t. f(x*) = 0, use "absolute cond#", defined analogously:

abs. forward err. | £(x%) - £(x) |
X = -
abs. backward err. | x* - x|
- for differentiable f
| ax £'(x) |
K f_abs = —=--—m-—mmmm = |£'(x)]
| ax |

- Example: f(x) = sqrt(x) = xN1/2}
fi(x) = 1/2 * xN-1/2} = 1/(2f(x))
| £ x| [ 1
K £ = = [

| £ | |2 £x) * £(x) | 2

- inverse problem: find x s.t. y = sqrt(x), or x = g(y) = y"2
Kg=2

- Conclusion: both f and g are well-conditioned

- Example: f(x) = tan(x)
f'(x) = sec’2(x) = 1 + tan"2(x)

| x(1+tan"2(x)) |
KE =  mmmememmemeee = very large near x = pi/2
| tan(x) |

- atx =1.57079, K_f = 2.48275 * 1075 (sensitive!!), so that
tan(1.57079) ~= 1.58058 * 10"5,  tan(1.57078) ~=6.12490 * 10"4

((1.58058 * 10”5 - 6.12490 * 1074 ) / (6.12490 * 1074)) / ((1.57079 - 1.57078)/1.57078) = K_f



- g(y) = arctan(y), at y = 1.58058 * 1075

K_g ~=4.0278 * 10N-6} (insensitive!!)

Stability and Accuracy

- An algorithm is *stable* if its results are insensitive to perturbations during computation
- e.g., truncation, discretization, and rounding errors

- Or, using backward error, algorithm is stable if
- effect of perturbations during computation is no worse than effect of small amount of data error
- *however* if problem is ill-conditioned, effect of small data error is really bad!
- won't get a good (accurate) solution even with a stable algorithm

-So

- well-conditioned problem + unstable algorithm => inaccurate solution
- ill-conditioned problem +  stable algorithm => inaccurate solution

- well-conditioned problem + stable algorithm => accurate solution



