
Conditioning and Stability

- Analogous concepts:
  - Conditioning of a *problem* = sensitivity to data errors
  - Stability of an *algorithm* = sensitivity to errors in computation

- Conditioning of a problem
  - problem solution is a map from input x to solution f(x)
  - PICTURE: error/uncertainty in data (x^), and error in solution (f(x^))
    - "backward error"    x - x^
    - "forward error" f(x) - f(x^)

- "well-conditioned"  = insensitive
  "ill-conditioned"   = sensitive

- How to make this notion *quantitative*?
  - ratio of relative forward error to relative backward error

       rel. forward err.         | f(x^) - f(x) | / | f(x) |
   K = -----------------    =    ---------------------------
       rel. backward err.           | x^ - x | / | x |

  - rearranging, see that K acts like "amplification factor"

     rel. forward err. =  K * rel. backward err.

  - ill-conditioned --->  large K
  - well-conditioned ---> small K or K close to 1
 
- Usually what we can derive is an upper bound for K, so that we get bound on rel. forward err.

    rel. forward err. <=  K * rel. backward err.

 
f is differentiable,  x^ = x + dx

           f(x + dx) - f(x) ~= dx f'(x) 

  - then K is

               | dx f'(x) | / | f(x) |      | f'(x) x |
         K_f = -----------------------  =   -----------
                    | dx | / | x |            | f(x) |

  - so K_f depends on properties of f and value of x

- There's a relationship between cond# of problem and cond# of inverse problem
  - Inverse problem of y = f(x) is find x s.t. f(x) = y, written x = f^-1(y) = g(y)
  - so 
            
        rel. forward err.          | g(y^) - g(y) | / | g(y) | 
        ------------------   =     ----------------------------
        rel. backward err.             | y^ - y | / | y |      
                                   | x^ - x | / | x |          1
                             =  --------------------------- = ---
                                | f(x^) - f(x) | / | f(x) |    K

  - Differentiable f(x), and g(y)
    -  g(f(x)) = x by def'n
    - using chain rule, g'(f(x)) f'(x) = 1, so g' = 1/f'
    - so cond#
              | g'(y) y |        | 1/f'(x) f(x) |       1
      K_g =   -----------   =   ------------------  =  ---
                | g(y) |             | x |             K_f

  - Lesson:
    - If K_f near 1, both f and g well-conditioned
    - If K_f big or small, either K_f or K_g ill-conditioned

- Side note: Above is "relative cond#".  If seeing x* s.t. f(x*) = 0, use "absolute cond#", defined analogously:
                abs. forward err.         | f(x^) - f(x) |
            K = -----------------    =    ----------------
                abs. backward err.           | x^ - x |

  - for differentiable f
                   | dx f'(x) |    
         K_f_abs = ------------  =  |f'(x)|
                     | dx | 

- Example:  f(x)  = sqrt(x) = x^{1/2}
            f'(x) = 1/2 * x^{-1/2} = 1/(2f(x))

              | f'(x) x |            | x |           1
       K_f =  -----------  =  -----------------  =  --- 
                | f(x) |      | 2 f(x) * f(x) |      2

  - inverse problem: find x s.t. y = sqrt(x), or x = g(y) = y^2

      K_g = 2

  - Conclusion: both f and g are well-conditioned

- Example: f(x) = tan(x)
           f'(x) = sec^2(x) = 1 + tan^2(x)

                | x(1+tan^2(x)) |
     K_f  =     -----------------  = very large near x = pi/2
                   | tan(x) |

     - at x = 1.57079, K_f = 2.48275 * 10^5 (sensitive!!), so that

     tan(1.57079) ~= 1.58058 * 10^5,     tan(1.57078) ~= 6.12490 * 10^4

((1.58058 * 10^5 - 6.12490 * 10^4 ) / (6.12490 * 10^4)) / ((1.57079 - 1.57078)/1.57078) = K_f



     - g(y) = arctan(y), at y = 1.58058 * 10^5

     K_g ~= 4.0278 * 10^{-6} (insensitive!!)

Stability and Accuracy

- An algorithm is *stable* if its results are insensitive to perturbations during computation
  - e.g., truncation, discretization, and rounding errors

- Or, using backward error, algorithm is stable if
  - effect of perturbations during computation is no worse than effect of small amount of data error
  - *however* if problem is ill-conditioned, effect of small data error is really bad!
    - won't get a good (accurate) solution even with a stable algorithm

- So
  - well-conditioned problem   +   unstable algorithm   =>   inaccurate solution
  -  ill-conditioned problem   +     stable algorithm   =>   inaccurate solution
  - well-conditioned problem   +     stable algorithm   =>   accurate solution


