Conditioning and Stability

- Analogous concepts:
 - Conditioning of a *problem* = sensitivity to data errors
 - Stability of an *algorithm* = sensitivity to errors in computation
- Conditioning of a problem
 - problem solution is a map from input x to solution f(x)
- PICTURE: error/uncertainty in data (x^), and error in solution (f(x^))
 - "backward error" x x^
 - "forward error" $f(x) f(x^{\hat{}})$

FORWARD

BACKWARD -

- "well-conditioned" = insensitive "ill-conditioned" = sensitive

- How to make this notion *quantitative*?
 - ratio of relative forward error to relative backward error

- rearranging, see that K acts like "amplification factor"

rel. forward err. = K * rel.

backward err.

- ill-conditioned ---> large K
- well-conditioned ---> small K or K close to 1

- Usually what we can derive is an upper bound for K, so that we get bound on rel. forward err.

backward err. <= K * rel. forward err. <= K * rel. f is differentiable, $x = x + \Delta x$

$$f(x + dx) - f(x) \sim dx f'(x)$$

- then K is

$$K_f = \frac{|dx f'(x)|}{|dx|} = \frac{|f'(x)|}{|f(x)|} = \frac{|f'(x)|}{|f(x)|}$$

- so Kpdepends on properties of f and value of x
- There's a relationship between cond# of problem and cond# of inverse problem
- Inverse problem of y = f(x) is find x s.t. f(x) = y, written $x = f^{-1}(y)$ = g(y)- so

Example: - Differentiable
$$f(x)$$
, and $g(y)$

$$-g(f(x)) = x by def'n$$

- using chain rule,
$$g'(f(x)) f'(x) = 1$$
, so $g' = 1/f'$

- so cond#

- Lesson:
 - If K_f near 1, both f and g well-conditioned
 - If K_f big or small, either K_f or K_g ill-conditioned
- Side note: Above is "relative cond#". If seeing x^* s.t. $f(x^*) = 0$, use "absolute cond#", defined analogously:

- for differentiable f

$$K_f_{abs} = ---- = |f'(x)|$$
 $|dx f'(x)|$
 $|dx|$

- Example:
$$f(x) = sqrt(x) = x^{1/2}$$

 $f'(x) = 1/2 * x^{-1/2} = 1/(2f(x))$

$$K_f = \frac{|f'(x) x|}{|f(x)|} = \frac{|x|}{|2f(x) * f(x)|} = \frac{1}{2}$$

- inverse problem: find x s.t. y = sqrt(x), or $x = g(y) = y^2$

$$Kq=2$$

- Conclusion: both f and g are well-conditioned

- Example:
$$f(x) = tan(x)$$

 $f'(x) = sec^2(x) = 1 + tan^2(x)$

- at x = 1.57079, K_f = 2.48275 * 10^5 (sensitive!!), so that

tan(1.57079) ~= 1.58058 * 10^5, tan(1.57078) ~= 6.12490 *

10^4 check. ((1.58058 * 10^5 - 6.12490 * 10^4) / (6.12490 * 10^4)) / ((1.57079 - 1.57078)/1.57078) = K_f & -g(y) = arctan(y), at $y = 1.58058 * 10^5$ $K_g \sim 4.0278 * 10^{-6}$ (insensitive!!)

Stability and Accuracy

- An algorithm is *stable* if its results are insensitive to perturbations during computation
 - e.g., truncation, discretization, and rounding errors
- Or, using backward error, algorithm is stable if
- effect of perturbations during computation is no worse than effect of small amount of data error
- *however* if problem is ill-conditioned, effect of small data error is really bad!
- won't get a good (accurate) solution even with a stable algorithm
- So
- well-conditioned problem + unstable algorithm => inaccurate solution
- stable algorithm => inaccurate - ill-conditioned problem + solution
- stable algorithm => accurate - well-conditioned problem + solution

Floating Point

- Generally use floating point, which is a *finite precision* system
 introduced *rounding* errors
- standard is IEEE 754 (1985)
 - adherence made numerical code more portable and reliable
- as opposed to fixed point : point is always after the 10^0 place

1.3

0.001

- floating point : point can "float"

- General floating point system

b base

p number of digits of precision

[U,L] exponent range

b p L U field width IEEE SP 2
$$23(+1)=24$$
 -126 127 $(1+8+23=32)$ IEEE DP 2 $52(+1)=53$ -1022 1023 $(1+11+52=64)$

- Floating point number x

$$x = +-\begin{pmatrix} d0 + d1 + d2 + \dots + d(p-1) \\ -- & -- \\ b & b^2 \end{pmatrix} * b^E$$
 $0 <= di <= b-1, i = 0, \dots, p-1 (p digits)$
 $L <= E <= U$

mantissa: d0d1...d(p-1)

exponent: E

$$b = 2$$

$$p = 3$$

$$L = -1$$

U = 1

start enumerating possibilities:

In general, number of possibilities

but

- lots of duplicates
- non-unique representation

Normalization

- require the leading digit to be non-zero
- so mantissa, m

$$1 <= m < b$$

- nice because:
 - representation is now *unique*
 - don't waste digits on any leading 0's
 - for binary base, leading digit must be 1
 - so don't need to store it, just assume number is 1.d1d2..dp
 - gain an extra bit of precision!

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$b = 10 \qquad (10.00)_{10} = (10)_{10}$$

$$b = 2 \qquad (10.00)_{2} = (2)_{10}$$

$$b = 3 \qquad (0.00)_{3} = (3)_{10}$$