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The above the basic QR Algorithm for finding eigenvalues of the matrix A.  In practice, this basic algorithm is further accelerated in several ways, including:
- Reduce cost per iteration:  Make the QR decomposition step cheaper.  For a general nxn matrix A, it is O(n^3).  The matrix A can be first reduced to upper Hessenberg form (see below), so that QR will be O(n^2).  If A is symmetric, the upper Hessenberg form is even better — it’s tridiagonal, making QR decomposition computable in O(n) operations.
- Reduce the number of iterations:  Apply carefully chosen shifts to increase the separation of the eigenvalues and thus accelerate the convergence of the method.





Eigenvalues of tridiagonal T by 
QR iteration
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Aside: Why does the QR algorithm work?  It may be easier to understand why Simultaneous Iteration works, because Simultaneous Iteration directly extends the simple power method.  Then, one can show a direct correspondence between the iterates in Simultaneous Iteration and the QR algorithm. (See Trefethen & Bau).
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For very large matrices, it is not practical to compute the direct reduction to Hessenberg form above, or to do QR iteration on the full matrix A.  Instead, Krylov subspace methods construct projections of A into small, Krylov subspaces.  The problem is solved on successively larger Krylov subspaces to obtain approximate solutions.  Krylov subspace methods are particularly appropriate when A is sparse, since they only use A to form Krylov vectors through application of A to a vector.  A is treated as a black box and need not even be explicitly represented as a matrix.




























