- matrix-vector multiplication $A\vec{x}$
 - by rows
 - by columns
- \bullet column space of A
 - for one vector
 - for two linearly independent vectors
 - column spaces of $A \in \mathbb{R}^{3 \times m}$
 - column spaces of invertible $A \in \mathbb{R}^{n \times n}$
- \bullet rank of A
 - dimension of column space of A
 - dimension of row space of A
- ullet matrix-matrix multiplication AB
 - using inner products (row of A dot column of B)
 - using outer products (column of A outer product with row of B)
- CR factorization
- rank 1 matrix (outer product matrix)
 - as building blocks of matrices (e.g., CR, LU, eigenvalue decomposition, SVD, etc.)

- four fundamental subspaces
 - range(A) (or columnspace(A))
 - nullspace(A)
 - $-\operatorname{range}(A^T)$ (or $\operatorname{rowspace}(A)$)
 - nullspace(A^T)
- $rowspace(A) \perp nullspace(A)$
- rowspace(A^T) \perp nullspace(A^T)
- find column space or rowspace of a small matrix
- find nullspace of small or simple matrix
- rank(AB)
- rank(A+B)
- $\operatorname{rank}(A^T A) = \operatorname{rank}(AA^T) = \operatorname{rank}(A) = \operatorname{rank}(A^T)$

- solving linear systems
 - algebraic interpretation: intersection of several lines (or hyperplanes)
 ("row view")
 - geometric interpretation: generate rhs vector \vec{b} from columns of A ("column view")
 - A singular and how that relates to algebraic and geometric interpretations
- A nonsingular, relation to
 - determinant
 - inverse
 - rank
 - nullspace
- existence and uniqueness of solutions to $A\vec{x} = \vec{b}$.
- triangular system
 - upper triangular and forward substitution
 - lower triangular and backward substitution
- preconditioning $MA\vec{x} = M\vec{b}$
- \bullet permutation matrix P
 - row permutation PA
 - column permutation AP
- LU factorization
 - by hand for simple, small matrix
- LU (a.k.a. Gaussian Elimination) unstable without pivoting
- PA = LU (LU with row pivoting)
- How to solve $A\vec{x} = \vec{b}$ with LU
- LU operation count
- triangular solve (forward and backward substitution) operation counts
- estimating operation counts

- orthogonal vectors
- orthogonal basis for a subspace
- \bullet orthonormal basis
 - find components of vector \vec{v} in an orthonormal basis
- \bullet orthogonal subspaces
- \bullet orthogonal matrix, Q
 - satisfies $Q^{-1} = Q^T$, i.e., $Q^TQ = QQ^T = I$
 - rotation or reflection
 - orthogonal 2×2 matrices
- \bullet vector 2-norm
 - triangle inequality
 - law of cosines
- \bullet projector matrix P
 - idempotence $P^2 = P$
- orthogonal vs. non-orthogonal projector
- complementary projector I P
- Householder reflection matrix

- $\bullet \ \ A\vec{v} = \lambda \vec{v}$
 - eigenvalue λ
 - -eigenvector \vec{v}
- scaling eigenvectors ($\alpha \vec{v}$ is also an eigenvector)
- transformations
 - powers of A
 - inverse of A
 - similarity
 - scalar shift (A + sI)
- characteristic polynomial $p(\lambda) = \det(A \lambda I) = 0$

- finding eigenvalues and eigenvectors of a 2×2 matrix
 - quadratic formula
- geometric multiplicity
- algebraic multiplicity
- ullet trace, determinant of A and eigenvalues
- eigenvalues of triangular matrix
- diagonalizing a matrix and eigenvalue decomposition
- real, symmetric matrix

- spd matrices
- spd conditions
 - eigenvalues $\lambda_i > 0$
 - energy $\vec{x}^T S \vec{x} > 0 \quad \forall \vec{x}$
 - all leading determinants
 - pivots in elimination
- eigen decomposition of symmetric matrix
- \bullet expressing any vector in terms of the eigenvectors of A
- \bullet LDL^T factorization
- Cholesky factorization
 - operation count compared to LU
 - stability compared to LU

- singular value decomposition (SVD): $A = U\Sigma V^T$
- singular vectors, \vec{u}_i, \vec{v}_i
- singular values, σ_i
- $A = \sum_{i=1}^r \sigma_i \vec{u}_i \vec{v}_i^T$
- reduced SVD: $A = U_r \Sigma_r V_r^T$

- computing SVD for 2×2 matrices
- computing SVD for matrices that are almost in SVD form
- singular values of orthogonal matrix
- geometry of the SVD (maps unit circle to ellipse in 2D)
- SVD and rank
- \bullet four fundamental subspaces of A from the SVD
 - null space of A
 - row space of A (i.e., column space of A^{T})
 - column space of A
 - null space of A^T
- orthogonal subspaces
 - -null space $A \perp$ column space A^T
 - -null space $A^T \perp \text{column space } A$

- vector norms
- vector norm properties
 - positive for non-zero vector
 - scale comes out
 - triangle inequality
- $\ell^1, \ell^2, \ell^\infty$ norms
- set of unit length vectors under $\ell^1, \ell^2, \ell^\infty$ norms
- p-norms
- 2-norm properties
 - $\vec{v} \cdot \vec{w} = \|\vec{v}\|_2 \|\vec{w}\|_2 \cos \theta$
 - $\vec{v} \cdot \vec{v} = ||\vec{v}||_2^2$
- ullet S-norm for symmetric matrix S
- matrix norms
- matrix norm properties

- positive for non-zero matrix
- scale comes out
- triangle inequality
- submultiplicative (for p-norms and Frobenius norm)
- induced matrix norms (1-, 2-, and ∞ -norms)
 - 1-norm : max abs column sum
 - $-\infty$ -norm : max abs row sum
 - 2-norm : σ_1
- Frobenius norm

$$- \|A\|_F^2 = \operatorname{trace}(A^T A)$$

$$- \|A\|_F^2 = \sigma_1^2 + \ldots + \sigma_n^2$$

• 2-norm and Frobenius norm invariant under orthogonal transformations

- project one vector onto a direction given by a unit vector
- project one vector onto a direction given by an arbitrary vector
- Gram-Schmidt orthogonalization
- Modified Gram-Schmidt orthogonalization
- QR factorization
 - by Gram-Schmidt
 - by Householder