Conditioning and Stability

- Analogous concepts:
 - Conditioning of a *problem* = sensitivity to data errors
 - Stability of an *algorithm* = sensitivity to errors in computation

- Conditioning of a problem
 - problem solution is a map from input x to solution $f(x)$
 - PICTURE: error/uncertainty in data (x^\wedge), and error in solution ($f(x^\wedge)$)

- "backward error" $x - x^\wedge$
- "forward error" $f(x) - f(x^\wedge)$

- "well-conditioned" = insensitive
 "ill-conditioned" = sensitive

- How to make this notion *quantitative*?
- ratio of relative forward error to relative backward error

$$K = \frac{\text{rel. forward err.}}{\text{rel. backward err.}} = \frac{|f(x^\wedge) - f(x)| / |f(x)|}{|x^\wedge - x| / |x|}$$

- rearranging, see that K acts like "amplification factor"

$$\text{rel. forward err.} = K \times \text{rel. backward err.}$$

- ill-conditioned --- large K
- well-conditioned --- small K or K close to 1
- Usually what we can derive is an upper bound for K, so that we get bound on rel. forward err.

$$\text{rel. forward err.} \leq K \times \text{rel. backward err.}$$

If f is differentiable, $\Delta x = x + \Delta x$

$$f(x + \Delta x) - f(x) \sim \Delta x \cdot f'(x)$$

- then K is

$$K_f = \frac{\left| dx \cdot f'(x) \right|}{\left| dx \right| \cdot x} = \frac{\left| f'(x) \cdot x \right|}{\left| f(x) \right|}$$

- so K_f depends on properties of f and value of x

- There's a relationship between cond# of problem and cond# of inverse problem
- Inverse problem of $y = f(x)$ is find x s.t. $f(x) = y$, written $x = f^{-1}(y)$
- so

$$\frac{\text{rel. forward err.}}{\text{rel. backward err.}} = \frac{\left| g(y^*) - g(y) \right|}{\left| f(x^*) - f(x) \right|} = \frac{\left| y^* - y \right|}{\left| x^* - x \right|} = \frac{1}{K_f}$$

Example:

- Differentiable $f(x)$, and $g(y)$
 - $g(f(x)) = x$ by def'n
 - using chain rule, $g'(f(x)) \cdot f'(x) = 1$, so $g' = 1/f'$
 - so cond#

$$K_g = \frac{\left| g'(y) \cdot y \right|}{\left| g(y) \right|} = \frac{\left| 1/f'(x) \cdot f(x) \right|}{\left| x \right|} = \frac{1}{K_f}$$
- Lesson:
 - If K_f near 1, both f and g well-conditioned
 - If K_f big or small, either K_f or K_g ill-conditioned

- Side note: Above is "relative cond#". If seeing x^* s.t. $f(x^*) = 0$, use "absolute cond#", defined analogously:

 $K = \frac{|f(x^*) - f(x)|}{|x^* - x|}$

- for differentiable f

 $K_{f_abs} = \frac{|dx f'(x)|}{|dx|} = |f'(x)|$

- Example: $f(x) = \sqrt{x} = x^{1/2}$

 $f'(x) = 1/2 * x^{-1/2} = 1/(2f(x))$

 $K_f = \frac{|f'(x) x|}{|f(x)|} = \frac{|x|}{2 f(x) * f(x)} = \frac{1}{2}$

 - inverse problem: find x s.t. $y = \sqrt{x}$, or $x = g(y) = y^2$

 $K_g = 2$

 - Conclusion: both f and g are well-conditioned

- Example: $f(x) = \tan(x)$

 $f'(x) = \sec^2(x) = 1 + \tan^2(x)$

 $K_f = \frac{|x(1+\tan^2(x))|}{|\tan(x)|} = \text{very large near } x = \pi/2$

 - at $x = 1.57079$, $K_f = 2.48275 \times 10^5$ (sensitive!!), so that

 $\tan(1.57079) \approx 1.58058 \times 10^5$, $\tan(1.57078) \approx 6.12490 \times$

\[10^4 \]

\[\text{check:} \]

\[\frac{(1.58058 \times 10^5 - 6.12490 \times 10^4)}{(6.12490 \times 10^4)} / \left(\frac{(1.57079 - 1.57078)}{1.57078} \right) = K_f \]

- \[g(y) = \arctan(y), \text{ at } y = 1.58058 \times 10^5 \]

\[K_g \approx 4.0278 \times 10^{-6} \text{ (insensitive!!)} \]

Stability and Accuracy

- An algorithm is *stable* if its results are insensitive to perturbations during computation
 - e.g., truncation, discretization, and rounding errors

- Or, using backward error, algorithm is stable if
 - effect of perturbations during computation is no worse than effect of small amount of data error
 - *however* if problem is ill-conditioned, effect of small data error is really bad!
 - won’t get a good (accurate) solution even with a stable algorithm

- So
 - well-conditioned problem + unstable algorithm => inaccurate solution
 - ill-conditioned problem + stable algorithm => inaccurate solution
 - well-conditioned problem + stable algorithm => accurate solution
Floating Point

- Generally use floating point, which is a *finite precision* system
 - introduced *rounding* errors

- standard is **IEEE 754 (1985)**
 - adherence made numerical code more portable and reliable

- as opposed to fixed point: point is always after the 10^0 place

 1234.567
 1.3
 0.001

- floating point: point can "float"

 1.234567 * 10^3
 1.3 * 10^0
 1.0 * 10^{-3}

General floating point system

\[
\begin{array}{lllll}
\text{b} & \text{base} & \text{p} & \text{number of digits of precision} & [U,L] & \text{exponent range} \\
\hline
\text{IEEE SP} & 2 & 23(+1)=24 & -126 & 127 & (1+8+23 = 32) \\
\text{IEEE DP} & 2 & 52(+1)=53 & -1022 & 1023 & (1+11+52 = 64) \\
\end{array}
\]

Floating point number x

\[
x = \pm (\underbrace{ d_0 + d_1 + d_2 + \ldots + d_{(p-1)} }_{\text{mantissa}}) \times b^E
\]

\[
0 \leq d_i \leq b-1, \quad i = 0, \ldots, p-1 \quad \text{(p digits)}
\]

\[
L \leq E \leq U
\]

mantissa: \[d0d1...d(p-1)\]
Example 1 (1):

\[b = 2 \]
\[p = 3 \]
\[L = -1 \]
\[U = 1 \]

start enumerating possibilities:

\[
\begin{array}{ccc}
+ & m & E \\
+ & 0.00 & -1 & \rightarrow 0 \\
+ & 0.00 & 0 & \rightarrow 0 \\
+ & 0.00 & +1 & \rightarrow 0 \\
+ & 0.01 & -1 & \rightarrow 0.001 \\
+ & 0.01 & 0 & \rightarrow 0.01 \\
+ & 0.01 & +1 & \rightarrow 0.1 \\
+ & 0.10 & -1 & \rightarrow 0.01 \\
+ & 0.10 & 0 & \rightarrow 0.1 \\
+ & 0.10 & +1 & \rightarrow 1.0 \\
\end{array}
\]

duplicates!

In general, number of possibilities
\[2 \cdot b^p \cdot (U - L + 1) \]

but

- lots of duplicates
- non-unique representation

Normalization
- require the leading digit to be non-zero
- so mantissa, \(m \)
\[1 \leq m < b \]
- nice because:
 - representation is now *unique*
 - don't waste digits on any leading 0's
 - for binary base, leading digit must be 1
- so don't need to store it, just assume number is 1.d1d2..dp
- gain an extra bit of precision!