Conjugate Gradients (CG)

A n×n
A symmetric positive definite

Since A is spd, it gives a norm

$$\| x \|_A = (x^T A x)^{1/2} \quad \text{"A-norm"}$$

CG has the following property:
In each iteration k, it finds $x_k \in \mathbb{R}^n$ that minimizes the A-norm of the error e_k. I.e.,

$$\| e_k \|_A = \min_{x_k \in \mathbb{R}^n} \| e_k \|_A$$
Solution: $\mathbf{Ax}^* = \mathbf{b}$

$$\min_{\mathbf{x} \in \mathcal{K}_k} (\mathbf{x}^*-\mathbf{x}_k)^T \mathbf{A} (\mathbf{x}^*-\mathbf{x}_k)$$

$$\phi(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{b}^T \mathbf{x} + c$$

$$\delta \phi = \frac{1}{2} \delta \mathbf{x}^T \mathbf{A} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{A} \delta \mathbf{x} - \mathbf{b}^T \delta \mathbf{x}$$

$$\Delta \phi = \mathbf{A} \mathbf{x} - \mathbf{b}$$

$$\phi(\mathbf{x}-\mathbf{x}^*) = \frac{1}{2} (\mathbf{x}-\mathbf{x}^*)^T \mathbf{A} (\mathbf{x}-\mathbf{x}^*)$$

$$+ \frac{1}{2} \mathbf{x}^T \mathbf{A} \mathbf{x}^* + (\mathbf{x}-\mathbf{x}^*)^T \mathbf{A} \mathbf{x}^*$$

$$- \mathbf{b}^T (\mathbf{x} - \mathbf{x}^*) - \mathbf{b}^T \mathbf{x}^* + c$$

$$\langle \mathbf{Ax}^* = \mathbf{b} \rangle = \frac{1}{2} \mathbf{e}^T \mathbf{A} \mathbf{e} + \frac{1}{2} \mathbf{b}^T \mathbf{x}^* + \mathbf{e}^T \mathbf{b} - \mathbf{b}^T \mathbf{e} - \mathbf{b}^T \mathbf{x}^* + c$$

$$\phi(\mathbf{x}^* + \mathbf{e}) = \frac{1}{2} \mathbf{e}^T \mathbf{A} \mathbf{e} - \frac{1}{2} \mathbf{b}^T \mathbf{x}^* + c$$

$$= \frac{1}{2} \mathbf{e}^T \mathbf{A} \mathbf{e} + \text{constant}$$
\[x_0, \quad r_0 = b - Ax_0, \quad s_0 = r_0 \]

for \(k = 0, 1, 2, \ldots \)
\[
\alpha_k = \begin{array}{c}
\alpha_k \\
X_{k+1} = x_k + \alpha_k s_k \\
r_{k+1} = r_k - \alpha_k A s_k \\
s_{k+1} = \begin{array}{c}
\end{array}
\end{array}
\]

end
C.G.

Step size \(\alpha_k \)

\[f(x_k + \alpha_k s_k) \] one-dim. minimization

\[\phi(\alpha_k) = f(x_k + \alpha_k s_k) \]

\[\frac{d\phi}{d\alpha}(\alpha_k) = \nabla f(x_k + \alpha_k s_k)^T s_k = 0 \]

For e.g., \(\nabla f(x) = b - Ax = r \)

\[\Rightarrow \left(\frac{d\phi}{d\alpha}(\alpha_k) = 0 \right) \Rightarrow \]

\[r_{ke}^T s_k = [b - A(x_k + \alpha_k s_k)]^T s_k \]

\[= b^T s_k - x_k^T A^T s_k - \alpha_k s_k^T A^T s_k = 0 \]

\[= (b - Ax_k)^T s_k - \alpha_k s_k^T A^T s_k = 0 \]

\[\Rightarrow \alpha_k = \frac{r_{ke}^T s_k}{s_k^T A^T s_k} \]
Steepest Descent Method

or gradient descent

this will zigzag very slowly toward the solution

\[x_0, r_0 = b - Ax_0, s_0 = r_0 \]

for \(k = 0, 1, 2, \ldots \)

\[\alpha_k = \frac{r_k^T s_k}{s_k^T A s_k} \]

\[x_{k+1} = x_k + \alpha_k s_k \]

\[s_{k+1} = s_k - \alpha_k A s_k \]

end

Progress

\[\frac{\phi(x_k) - \phi(x^*)}{\phi(x_{k-1}) - \phi(x^*)} \leq 1 - \frac{1}{\text{Cond } A} \]
What if we try \(S_k \) mutually orthogonal? If we tried to do \(n \) steps with orthogonal directions, as illustrated, the step size we would need would not be the one for exact line search.

Mathematically, we want to start at \(x_0 \) and reach \(x^* \) in \(n \) steps along \(S_k \):

\[
x^* = x_0 + \sum_{k=0}^{n-1} \alpha_k S_k
\]

Let \(e_0 = x_0 - x^* \) and \(e_k = x_k - x^* \)

Find \(\alpha_k \):

\[
e_0 = x_0 - x^* = -\sum_{k=0}^{n-1} \alpha_k S_k
\]

\[
S_j^T e_0 = -\sum_{k=0}^{n-1} \alpha_k S_j^T S_k = \langle \text{assume } S_j^T S_k = 0, j \neq k \rangle
\]

\[
\Rightarrow \quad \alpha_j = \frac{S_j^T e_0}{S_j^T S_j} = \frac{S_j^T e_k}{S_j^T S_j}
\]

Problem: we don't know \(e_0 \) or \(e_k \).
What about A-orthogonal directions s_k?

\[
e_0 = -\sum_{k=0}^{n-1} \alpha_k s_k
\]

\[
s_j^T A e_0 = -\sum_{k=0}^{n-1} \alpha_k s_j^T A s_k
\]

\[
= -\alpha_j s_j^T A s_j
\]

\[\Rightarrow \alpha_j = -\frac{s_j^T A e_0}{s_j^T A s_j} = -\frac{s_j^T A e_j}{s_j^T A s_j} = \frac{s_j^T r_j}{s_j^T A s_j}
\]

This is a quantity we know, and it is the one given by exact line search along s_j.
But what are the search directions \(S_k \)?

A-orthogonal search directions will allow us to terminate in \(n \) steps:

\[
e_0 = \sum_{i=0}^{n-1} \alpha_i s_i
\]

\[
S_k^T A e_0 = -\sum_{i=0}^{n-1} \alpha_i s_i^T A s_i = -\alpha_k s_k^T A s_k
\]

\[
\Rightarrow \alpha_k = -\frac{S_k^T A e_0}{S_k^T A s_k} = -\frac{S_k^T A e_k}{S_k^T A s_k} = \frac{S_k^T r_k}{S_k^T A s_k}
\]

\[
x_0 + e_0 = x, \quad e_0 = x - x_0
\]

\[
x_0 + \sum_{k=0}^{n-1} \alpha_k s_k = x
\]

Create the search directions through Gram-Schmidt A-orthogonalization:

\[
U_0, \ldots, U_{n-1}
\]

\[
s_i = u_i + \sum_{j=0}^{i-1} \beta_{ij} s_j
\]

\[
0 \leq e_k, S_k^T A s_i = S_k^T A u_i + \sum_{j=0}^{i-1} \beta_{ij} S_k^T A s_j = 0
\]

\[
\Rightarrow \beta_{ik} = -\frac{S_k^T A u_i}{S_k^T A s_k}
\]

\[\text{need to keep all old } s_i \text{ in memory, then orthogonalize against all.}\]
\[S_k = u_k + \sum_{j=0}^{k-1} \beta_{kj} s_j \]

Gram-Schmidt A-orthogonalization:

\[\begin{align*}
0 = s_i^T \hat{A} s_k &= s_i^T A u_k + \sum_{j=0}^{k-1} \beta_{kj} s_i^T A s_j \\
&= s_i^T A u_k + \beta_{ki} s_i^T A s_i \\
\Rightarrow \beta_{ki} &= -\frac{s_i^T A u_k}{s_i^T A s_i}
\end{align*} \]

CG: use Krylov subspaces, use residuals instead of arbitrary \(u_k \), and A-orthogonalize residuals:

\[\beta_{ki} = -\frac{s_i^T A r_k}{s_i^T A s_i} = -\frac{r_k^T (A s_i)}{s_i^T A s_i} \]

\[= \langle A s_i = \frac{1}{\alpha_i} (r_i - r_{i+1}) \rangle \]

\[= \frac{r_k^T (r_{i+1} - r_i)}{\alpha_i s_i^T A s_i} = \frac{r_k^T r_{i+1} - r_k^T r_i}{\alpha_i s_i^T A s_i} = \frac{\sum_{i=k-1}^i r_k^T r_i}{\alpha_i s_i^T A s_i} \]

\[\begin{cases} r_k^T r_k & \text{if } i = k-1 \\ 0 & \text{otherwise} \end{cases} \]

For (1) and (2), see next page.

There is only one non-zero \(\beta_{ki} \in \beta_k \)
1. residuals orthogonal
 \[r_k^T S_j = 0, \quad j < k \]

 \[r_k^T S_j = -(Ae_i)^T S_j \]

 \[= -S_j^T A \left[- \sum_{i=k}^{n} \alpha_i s_i \right] = 0 \]

 \[S_j = r_j + \sum_{i=0}^{j-1} \beta_i s_i \]

 So

 \[r_k^T r_j = r_k^T \left[S_j - \sum_{i=k}^{j-1} \beta_i s_i \right] = 0 \]

2. \[\alpha_i s_i^T A s_i = r_i^T r_i \]

 \[r_{i+1} = r_i - \alpha_i A s_i \Rightarrow \alpha_i A s_i = r_i - r_{i+1} \]

 \[\alpha_i s_i^T A s_i = s_i^T \left[r_i - r_{i+1} \right] \]

 \[= (r_i + \sum_{j=0}^{i-1} \beta_j s_j)^T (r_i - r_{i+1}) = r_i^T r_i \]
Conjugate Gradients for $Sx = b$

- Applies to s.p.d. matrices S
- In theory gives the exact result in n steps
- In practice, gives good result in much fewer than n steps.
- Residuals are orthogonal $r_k^T r_j = 0$
- Search directions are A-orthogonal $S_k^T A s_j = 0$

C.G.

$x_0 = $ initial guess

$r_0 = b - Ax_0$

$s_0 = r_0$

for $k = 0, 1, 2, \ldots$

\[
\alpha_k = \frac{r_k^T r_k}{s_k^T A s_k}
\]

$x_{k+1} = x_k + \alpha_k s_k$

$r_{k+1} = r_k - \alpha_k A s_k$

$\beta_{k+1} = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$

$s_{k+1} = r_{k+1} + \beta_{k+1} s_k$

end
Convergence of CG

\[\| x - x_k \|_A \leq 2 \| x - x_0 \|_A \left(\frac{\sqrt{\lambda_{\text{max}}^2 - \sqrt{\lambda_{\text{min}}^2}}}{\sqrt{\lambda_{\text{max}}^2 + \sqrt{\lambda_{\text{min}}^2}}} \right)^k \]

\[K_2(A) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \]

\[\| x - x_k \|_A \leq 2 \| x - x_0 \|_A \left(\frac{\sqrt{k} - 1}{\sqrt{k} + 1} \right)^k \]
Preconditioning $Ax = b$

Find P close to A and solve

$$P^{-1}Ax = P^{-1}b$$

with the idea that solver converges more quickly on $P^{-1}A$ than on A.

P^{-1} should be reasonable to computed. (Not actually computed, but represents solve $P^{-1}c \Rightarrow y | Py = c$)

Frequent choices of P:

1. main diagonal of A (Jacobi)
2. triangular part of A (Gauss-Seidel)
3. $P = L_0 U_0$ incomplete LU, avoid fill-in
4. $P =$ same diff matrix but on coarser grid (multigrid)