Name: SID:
CS130 - LAB 5 - Getting Started with Project 2

Project 2 consists of implementing a simplified rendering pipeline.
The source code can be found at https://www.cs.ucr.edu/~shinar/courses/cs130/proj-gl.html.

For this lab, you’ll need to get the first test working (test 00.txt), which include (1) allocating memory for
the image to be rendered, (2) assigning values to (3) vertices and rendering triangles. Let’s get started
by checking in which file you will need to implement the first steps and implementing (1), (2) and (3) on
each step of this tutorial.

There are 5 cpp files in the project, you will need to implement your code only in driver_state.cpp. In

driver_state.cpp, there are four empty functions with TODOs in them. What are these functions and
what they do?

Function Name Brief Description

PART (1): We will only work in 3 of these functions in this lab. Let’s start with initialize_render. We need
to allocate the memory space for the color_image and for the depth_image. Note that color_image is a
pointer. Look at driver_state.h and in common.h, you will notice that color_image is a typedef for
another type.

What is the typedef name of color_image?
What is the actual type of color_image?

Look at make_pixel in common.h. In which order is the RGB color information stored in a single pixel in
color_image?

How many bytes each channel (red, green, blue) are used in a single pixel?

How can we set a pixel with the color white?

Implement initialize_render in driver_state.cpp by allocating the memory for color_image. Initialize all
the pixels in color_image to black. We will not be using depth_image until we implement z-buffer, so

you can ignore it for now. Make sure your code compiles and run without issues on valgrind. You can
compile the code using scons and you can run on test 00.txt using ./driver -i tests/00.txt.

https://www.cs.ucr.edu/~shinar/courses/cs130/proj-gl.html

PART (2): Next step we need to implement a few things in render. There are two parameters here,
what these two parameters do?

Parameter Brief description

driver_state &state

render_type type

Start by creating a switch for the render type. There should be four types, let’s focus only on triangle
for now and leave the other 3 cases empty. In the triangle case, we need to prepare a data_geometry
array of size 3 (one for each vertex of the triangle) and call rasterize triangle using this array. Let’s first
take a look at data_geometry defined in common.h. What are the two fields that we need to set on
each data_geometry object?

data_geometry Brief description

We will not set the position of data_geometry. This will be the responsibility of the vertex shader.
Instead, we will copy the data we have from each vertex of the triangle into the data_geometry and
then call the vertex shader. Ok, let’'s see how we get this data in the render triangle case. Look at
driver_state.h and try to find where the data for each vertex is stored. There should be 3 relevant
variables. What are they?

and

Consider we have the following triangle. Write on the right side of the triangle what would be the
values in the three variables for this triangle.

(1, 3), calor red
s

(3, 1), color green

(0, 0, color blue

Write the code in render for the triangle case to read every 3 vertices in driver_state into a the
data_geometry array and call rasterize_triangle.

PART (3): Final step is to rasterize the triangle from part (2) in the rasterize_triangle function.

a

a

Start by passing each vertex in data_geometry to the vertex shader (see function in
driver_state.h).

Recall we are using homogeneous coordinates, so you will need to divide the position in the
data_geometry by w.

Calculate the pixel coordinates of the resulting data_geomtry position. In particular, the
data_geomtry x and y positions should be in Normalized Device Coordinates (NDC) with each
dimension going from -1 to +1. You will need to transform x from O to width and y from O to
height. You will also need to account for the fact that the NDC (-1, -1) corresponds to the bottom
left corner of the screen but not the center of the bottom left pixel. Given (x, y) in NDC, what
equation gives you (i, j) in pixel space (use w to denote width and h to denote height).

j=
Draw the vertices in the image (recall you can access the image_color in driver_state). Make
sure they fall on the vertices of the 00.png image. You will have the (i, j) position of the pixel but
you need to set a specific pixel in the width*height color_image of driver_state. How do you
calculate the corresponding index in color_image using (i, j)?

image_index =

To rasterize the triangle, you can iterate over all pixels of the image. Say you are in the pixel
with indices (i, j). You can use the barycentric coordinates of this pixel (i, j) to know if this pixel
falls inside the triangle or not.

=) Barycentric coordinates can be calculated using triangle areas. Fill
P ' out the equations for the barycentric coordinates below.

/

o = AREA() / AREA(abc)

P =AREA(____)/AREA(abc)

y =AREA(______)/AREA(abc)

—
b You can calculate the area of the triangle using the formula:
[c

AREA(abc) = 0.5 * ((b,c, — cxby) — (axc, — cxay) + (axhy, — bray))

If all barycentric coordinates are >= 0, then make the pixel color white. You should be passing
test 00.txt now. Make sure you don’t have any errors on valgrind.

Other things to do

Rather than visiting all the pixels of the image for every triangle, visit only the pixels in the square that
contains the triangle. For this, calculate the maximum and minimum x and y coordinates and make your
for loops iterate over the [minimum, maximum] range.

Use the fragment shader to calculate the pixel color rather than setting to white. See data_output in
common.h and the fragment_shader function in driver_state.h.

Implement color interpolation by checking interp_rules in driver_state before sending the color to the
fragment_shader. You have one interp_rule for each float in the data_geometry.data. If the rule type is
noperspective (see interpolation types in common.h), then interpolate the float from the 3 vertices using
the barycentric coordinates.

