
Name: SID: LAB Section:

Lab 8 - Part 1: Particle Simulations

In particle simulations, each particle’s dynamic state (position,

velocity, acceleration, etc) is modeled independently of the

particle’s visual state (color, shape, texture, etc). The frame rate

of the dynamic update may be different from the rendering frame rate.

Read the accompanied document (particle.pdf) and answer the questions.

You may assume the following variables are available for each

particle.

m:​ mass of a particle
x:​ position of a particle
v:​ velocity of a particle
f:​ force applied on a particle

1. Write the explicit Euler update formula for a particle with the

properties given above:

a.​ What does h represent in this equation?

b. Select ​more or ​less ​: Smaller steps typically result in ​more ​/ ​less

physically accurate and stable solutions, but require ​more ​/ ​less

iterations.

c. Write the pseudocode for the explicit Euler update. You may assume

the availability of the particle variables.

void Euler_Step(float h)

{

}

2. ​Write down the 3D gravity force applied on a particle in terms of

g=9.8 and particle variables.

F ​
gravity ​= [, ,]

3. According to the collision handling definition in the accompanying

document, the particles should be reflected when they hit the ground.

Select True or False and correct the sentence if False.

(T/F) The y-coordinate of a particle’s position can be used to detect

the collision with the ground.

(T/F) If the particle is above the ground level, the y-coordinate of

the particle’s position should be set to 0.

(T/F) The z-coordinate of the particle’s velocity should be inverted

(v ​
z ​=-v ​z ​) if the particle is below the ground and its v ​

z
is less than

0.

(T/F) The damping coefficient is used to control the bounciness of

particles when they hit the ground. The y-component of the velocity

should be changed according to this coefficient.

(T/F) The coefficient of restitution is applied to the tangential

velocity of the particles to create an effect of friction.

(T/F) Damping and restitution should only be applied if the particle

is below the ground and its velocity is pointing downwards (v ​
y ​ < 0).

(T/F) Both damping and restitution coefficients are selected to be

between -1 and 1.

4. We can draw a line showing the particle trail in the simulation.

For this purpose, one can trace the earlier positions of a particle

or find a point in the direction of the velocity of a particle and

draw a line from this point to the particle position. Given the

particle variables above, find a point x ​
old

that is s*|v| away from

the position x of the particle in the direction of its velocity v.

x ​
old ​ =

5. Given that x and x_old are vec3, write the OpenGL code that draws

a line from x to x_old:

glBegin(__________________________);

glEnd();

Lab 8 - Part 2: Implementation

Here is a brief outline of what you’ll need to do in this lab. See

the next pages for details.

❏ Download the skeleton code and compile/run it.

❏ Create a particle class/struct.

❏ Add member functions to simulate particles and handle

collisions.

❏ Add global variable(s) to keep a list of particles.

❏ Add helper functions to add randomly initialized particles.

❏ Use the helper functions to generate some initial particles in

init_event ​function.
❏ Modify the draw_event function to draw particles.

❏ Run and test if the particles are properly created and drawn.

(you can hide the volcano by pressing ‘v’ in the executable.)

❏ Simulate the particles and handle collisions in the ​draw_event

function. Run and test again.

❏ Modify the ​draw_event function so that it will generate new

particles at every call.

❏ Play with the coefficients of restitution and damping to get

different collision effects.

❏ Add a time variable and update the color of the particles

according to time in the draw_event function.

Complete the exercises below and update your code accordingly.

1. Fill the ‘Particle’ struct definition below with the required

variables for its dynamics and its visual state (color) and add it to

application.cpp.

struct​ ​Particle
{

};

2. Add the following member functions to the particle class/struct

and implement them according to the documentation.

void​ ​Euler_Step​(​float​ h​)​ ​// update v and x with an Forward Euler Step
 (see particle.pdf and Part 1.1)

void​ ​Reset_Forces​()​ ​// reset force to 0 vector;

void​ ​Handle_Collision​(float ​damping​, float ​coeff_resititution​)
// reflect particle on ground and apply damping and restitution (see Force

Sources section of the document and Part 1.3)

3.​ Create a vector that stores a list of particles globally in
application.cpp.

4. ​Add these global helper functions to application.cpp

void​ ​Add_Particles​(​n​)​ ​// generates n random particles, and ​appends to the
particle vector​.

Suggestions:

mass of particle​: 1
 start position of a particle, x​: (random(0,0.2) , 0.05, random(0,0.2)
 start velocity of a particle, v​: (10*x.x, random(1,10),10*x.z)

color of the particle​: yellow
 * Play with the numbers to take the simulation to your liking

float​ random​(​k​,​l​)​ ​// returns a random ​float​ between floats k,l (Google ‘c++
random float number’)

5.​ At every draw_event call (in application.cpp), your code should:
 ​Step 1 ​. Create new particles. Use the Add_Particles helper function
(​see 4 ​) ​.
 ​Step 2 ​. Iterate over each particle and update its dynamics
according to the Table (correctly ordered) (​see 6 ​).
 ​Step 3 ​. Draw each particle p as a line from p.x to p.x+0.04*p.v
 (with color of the particle).

5.a.​ Create 10 new particles in the init_event.

5.b. Draw your particles in the draw_event function (see comments in

the code for exact location). Test your code.

5.c. Create 20 new particles in the draw_event function (in the

beginning of the ‘if not paused’ block). This will add 20 new

particles every h seconds. Change the value if you want more.

*You’ll implement the 2nd step in the following part.

6. Order the code below so that it will update the particle dynamics

at each frame. Implement this as the 2nd step of the algorithm in

Part 2.4 in your code.

Order: __

A Add forces

B Handle the collisions: correct velocity and position if it hits

the ground.

C Set total/accumulated force to 0

D For each particle p:

E Use explicit Euler step​ to update the position and the velocity

7. Test your code with the following values and briefly describe

their effect in the simulation:

Damping: 0 0.5 1

Restitution: 0 0.5 1

Play with these parameters so that the simulation would look as you

like.

8. ​Change color dynamically.

a.​ Add a new variable duration (d) in the particle class.
b. Initially, the d value of every particle should be set to 0.

Change the Add_Particles function accordingly.

c. Update d with the time-step h: d = d + h before you draw the

particles.

d.​ Add a global helper function that returns the interpolated color:

vec3 Get_Particle_Color(float d)

 Your function should return a color according to:

if d < 0.1: return ​yellow
else if d < 1.5: return an interpolated value from ​yellow to

red​.
else if d < 2: return ​red
else if d < 3: return an interpolated value from ​red​ to ​grey​.
else return ​grey​.

* You can use (0.5, 0.5, 0.5) for grey.

e. After you update the d value of the particle (8.c), update each

particle’s color with the return value of the Get_Color function,

called with the particle’s duration d as the input parameter.

