Graphics Pipeline

Rendering approaches

image-oriented

foreach pixel ...

object-oriented

foreach object ...

| View Ray

8 Light Source

S
//\\\ Q
\ Scene Object

3D rendering
pipeline

Pipelining operations

An arithmetic pipeline that computes c+(a*b)

2 —
b—>| > >

3D graphics pipeline

Clipper and

: Vertex . Fragment .
Vertices mmgp processor'_) primitive | Rasterizer gy o - Pixels

assembler

Geometry: primitives - made of vertices

Vertex processing: coordinate transformations and color
Clipping and primitive assembly: output is a set of primitives
Rasterization: output is a set of fragments for each primitive
Fragment processing: update pixels in the frame buffer

Choice of primitives

® Which primitives should an APl contain!?
® small set - supported by hardware, or

® |ots of primitives - convenient for user

Choice of primitives

® Which primitives should an API contain?
=) small set - supported by hardware

® |ots of primitives - convenient for user

Choice of primitives

® Which primitives should an API contain?

=) small set - supported by hardware

® |ots of primitives - convenient for user

Choice of primitives

® Which primitives should an API contain!?
=) small set - supported by hardware

® |ots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Choice of primitives

® Which primitives should an API contain!?
=) small set - supported by hardware

® |ots of primitives - convenient for user

GPUs are optimized for
points, lines, and triangles

Other geometric shapes will be built out of these

Point and line segment types

P
Pe ® oP: P, \93
Poe oP4 I:’O/
P;® o °®Ps P7\
Ps
GL POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP

[4au1aayg pue |98uy]

OpenGL polygons

® Only triangles are supported (in latest versions)
o

® ® ¢ lz S 2 ﬁ
®

® ® GL_TRIANGLE STRIP

®

®

o o
GL POINTS GL TRIANGLES < >

GL TRIANGLE FAN

Graphics Pipeline

(slides courtesy K. Fatahalian)

Vertex processing

Vertices are transformed into “screen space”

®
v0
® v5
®
P v4
v3 ® ®
Vertices
Clipper and Fraement
Vertices mugp- == primitive g Rasterizer mupt professor - Pixels
assembler

Primitive processing

Then organized into primitives that are clipped
and culled...

v2

o
v0
® v5
®
v4
P v4 .‘
v3 @ ®
Vertices Primitives

(triangles)

. Vertex
Vertices —) -

Fragment
Rasterizer—)» —) Pixels
processor processor

Rasterization

Primitives are rasterized into “pixel fragments”

Vertex
processor

Fragments

Clipper and
primitive
assembler

> s>

Fragment
- Pixels
processor

Fragment processing

Fragments are shaded to compute a color at each pixel

Shaded fragments

Vertex Clipper and
Vertices —) processor'_) primitive —) Rasterizer Pixels
assembler

Pixel operations

Fragments are blended into the frame buffer at
their pixel locations (z-buffer determines visibility)

Pixels

Modern OpenGL/Vulkan pipeline

University of California Riverside

Evolution of OpenGL

1992: Initially fixed functionality pipeline
2004: Added programmable shaders

2008: Fixed pipeline deprecated

2009: Fixed paths removed

o Still available for compatibility
e Fixed pipe emulated with shaders

Pipeline

@ Input: geometry
o Output: image (on screen)
@ Programmable stages

vertex input

Y

post vertex processing

Y

primitive assembly

Y

rasterization

v

per-sample operations

Vertex mput

vertex input

e Supply input data to pipeline

o Stream of vertices post vertex processing
: v
o Indices (for meshes) brimitive assembly
Y
rasterization

per-sample operations

Vertex shader

@ Programmable (user-defined)
@ For per-vertex operations

@ Used to transform vertices
@ Can do other things here

e Lig, per-vertex lighting
@ Define colors at vertices
e Interpolate within triangles

vertex input

Y

vertex shader

post vertex processing

Y

primitive assembly

Y

rasterization

v

per-sample operations

Tessellation

vertex input

@ Programmable (user-defined)

@ Optional stage

tessellation

@ For subdividing primitives

post vertex processing

Y

primitive assembly

Y

rasterization

per-sample operations

Image source: |[?]

(GGeometry shader

vertex input

e Programmable (user-defined) :
@ Optional stage
e Input: one primitive (at a time)
e e geometry shader
o Output: (many) primitives ;
@ Possible uses: post vertex processing
° Y
[Instan(jing primitive assembly
@ Turn lines into curves raster:zation
e Draw points as squares, 7

diamonds, or stars (plots!)
e Bad use: tessellation ber-sample operations

Post vertex processing

vertex input

v

o Clipping
e removes (part of) primitive
e if outside image

e if too close/far post vertex processing
. .o 7
@ Perspective divide Crimitive assombly
° (337 Y Z,’lU) > (Z” g” 5’) raster:zation
e We will see this later ;

per-sample operations

Primitive assembly

vertex input

v

@ Turn primitives into base

primitives

e 'Triangle strip to triangles

@ Line lOOp to Segments post vertex processing
. A

° B&Ck-faCe Culhng primitive assembly

@ do not render the backside Y
. rasterization

@ cannot see 1t anyway ;

per-sample operations

Rasterization

vertex input

o Input: primitive (e.g., triangles)

e Output: fragments

post vertex processing

Y

primitive assembly

Y

rasterization

gt |

per-sample operations

Fragment shader

vertex input

v

@ Programmable (user-defined)

e Input: fragment data
e interpolated vertex data

o OU-tpU-t: depth, COlOr post vertex processing
e Compute color of pixel —
primitive assembly
e Phong shading {
@ texture mappmg rasterl*zatlon
o bump mapping fragment shader
v
per-sample operations

Per-sample operations

vertex input

o Z-buffering (occlusion)

@ Discard hidden pixels
e Optimization: before fragment

ooty |

Shader lf pOSSible post vertex processing
Y
Q MaSkiﬂg, blending primitive;xssembly
@ Storing results rasterization

et |

per-sample operations

