CS130 - LAB 2 - Introduction to Ray Tracing (Assignment 1) Section:
Pre-Lab - Part 1: Ray Sphere Intersection

Consider a ray with endpoint e and (unitary) direction u. Consider a sphere with center c and radius r. The
equations for the ray and the sphere are:

e ray:R(t)=e+ut
e sphere:S(x)=(x-c)*(x-c)=1r?

Any point r on the ray can be found using the real value t >= 0.
Any point x that satisfies the sphere equation is on the sphere.

Follow the steps below and calculate t’s such that the point in the ray intersects the plane.

Step 1: Combine the ray and sphere equations to find t that solves both equations by expanding S(R(¢)) = 0.

Step 2: Rearrange the terms and group the terms with ¢, ¢ and, write the equation at the form
at? +bt+c=0
then find a, b and c.

Hint 1) group terms that does not have t, before distributing the dot product.
Hint2) v -u = 1.

Step 3: The discriminant, A, of the quadratic equation can be found by A = »* — 4ac
Write A in terms of sphere and ray parameters by substituting a,b and c.

A=

Name: SID: 1

https://www.codecogs.com/eqnedit.php?latex=t%0
https://www.codecogs.com/eqnedit.php?latex=t%0
https://www.codecogs.com/eqnedit.php?latex=t%5E2%0
https://www.codecogs.com/eqnedit.php?latex=t%0
https://www.codecogs.com/eqnedit.php?latex=at%5E2%20%2B%20bt%20%2B%20c%20%3D0%0
https://www.codecogs.com/eqnedit.php?latex=a%0
https://www.codecogs.com/eqnedit.php?latex=b%0
https://www.codecogs.com/eqnedit.php?latex=c%0
https://www.codecogs.com/eqnedit.php?latex=t%0
https://www.codecogs.com/eqnedit.php?latex=u%20%5Ccdot%20u%20%3D1%0
https://www.codecogs.com/eqnedit.php?latex=a%3D%0
https://www.codecogs.com/eqnedit.php?latex=b%3D%0
https://www.codecogs.com/eqnedit.php?latex=c%3D%0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%3D%20b%5E2%20-%204ac%20%0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%0
http://www.texrendr.com/?eqn=a%0
https://www.codecogs.com/eqnedit.php?latex=b%0
https://www.codecogs.com/eqnedit.php?latex=c%0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%0

Step 4 : Finding the t's for the intersections

Case 1: if A < 0 :then there are no intersections

Case 2: If A == (: there is a single intersection (tangential intersection): L= —b/(2ac)

Case 3:if A > 0 :then there are two solutions: 1 and %2:

_ —b—VA t_—b+\/Z

t _
! 2ac 2 2ac

Write t1 and %2 in terms of sphere and ray parameters by substituting @, b, ¢ and A.

~
—
|

ty =

Step 5 : For case 3, there are two sub-cases:

If t1 > 0 : there are two intersections 1 and 2

End point is outside

If 1 < 0 : there is one intersection : {2

v o
_r'/ h
i b
i &=
/ -
|| - - t2 |I
- |
| 27 |
1 . |
L |
\ /
‘\\\ /
~ -

End point is inside

You do not need to do anything for this step.

Name: SID:

https://www.codecogs.com/eqnedit.php?latex=t%0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20%3C%200%0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20%3D%3D%200%0
https://www.codecogs.com/eqnedit.php?latex=t%20%3D%20-b%20%2F%20(2ac)%0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20%3E%200%0
https://www.codecogs.com/eqnedit.php?latex=t_1%0
https://www.codecogs.com/eqnedit.php?latex=t_2%0
https://www.codecogs.com/eqnedit.php?latex=t_1%3D%5Cfrac%7B-b-%5Csqrt%7B%5CDelta%7D%7D%7B2ac%7D%0
https://www.codecogs.com/eqnedit.php?latex=t_2%3D%5Cfrac%7B-b%20%2B%20%5Csqrt%7B%5CDelta%7D%7D%7B2ac%7D%0
https://www.codecogs.com/eqnedit.php?latex=t_1%0
https://www.codecogs.com/eqnedit.php?latex=t_2%0
https://www.codecogs.com/eqnedit.php?latex=a%0
http://www.texrendr.com/?eqn=b%0
https://www.codecogs.com/eqnedit.php?latex=c%0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta.%0
https://www.codecogs.com/eqnedit.php?latex=t_1%3D%0
https://www.codecogs.com/eqnedit.php?latex=t_2%3D%0
https://www.codecogs.com/eqnedit.php?latex=t_1%3E0%0
https://www.codecogs.com/eqnedit.php?latex=t_1%0
https://www.codecogs.com/eqnedit.php?latex=t_2%0
https://www.codecogs.com/eqnedit.php?latex=t_1%3C0%0
https://www.codecogs.com/eqnedit.php?latex=t_2%0

Pre-Lab Part 2: Familiarizing with the skeleton code

2.A. Vectors
src/vec.h includes the definition of struct vec, that stores the data and provide the functionality for vectors
(for math).
There are also some typedefs for the most common vector types:
vec3: a 3D vector of doubles
vec2: a 2D vector of doubles
ivec2: a 2D vector of integers (int), all the operations will be done with integer precision.
e.g.
[1.22-0.9] can be created by: vec3(1.2, 2, -0.9);
[1.2-0.9] can be created by vec3(1.2, -0.9);
[15] can be created by either vec2(1,5); orivec2(1,5);

Q1. Given u and v are vec3 objects storing 3D vectors, fill the missing cells in the table below with code or it’'s
explanation.

Code Description
u[@]=5 Sets Uz, x component of u,to 5
v[2]=6 Sets Uz, zcomponent of v, to 6

vec3d m = u+v

Vec3 p=u[0]*v

double k=dot(u,v)

Create a vec3 c that stores the cross product of uand v

returns magnitude (length) of u.

u.normalized() returns u/|u| (the unit vector in u’s direction)
(u-v)u
2
Create a vec3 k, such that |ul
cout << u << endl; prints vector u (values separated with commas)

Name: SID: 3

https://www.codecogs.com/eqnedit.php?latex=u_x%0
https://www.codecogs.com/eqnedit.php?latex=v_z%0
https://www.codecogs.com/eqnedit.php?latex=k%3D%5Cfrac%7B(u%20%5Ccdot%20v)%20u%7D%7B%7Cu%7C%5E2%7D%0

2.B. Ray Tracing Algorithm and related classes/functions

The general algorithm for ray tracing is as follows:

for each pixel (i,j):
Compute the ‘world position’ of the pixel
Create a ray from the camera position to the world position of the pixel
Cast the ray and evaluate the color of the pixel:
Find the closest object, obj, that intersects with the ray.
Get the pixel color by using Shader_Surface function of a shader.
If there are no objects, use background_shader
else, use obj’s material_shader

Please find the appropriate files in the skeleton code and fill the blanks below.

1. World_Position function in Camera class, returns the world position of a given pixel, ivec2 pixel_index.

a. World_Position function is implemented in camera.cpp starting from line #

2. Cell_Center function in Camera class, returns the screen position of a given pixel, ivec2 pixel_index.

a. Cell_Center function is implemented in camera.h starting from line #

3. Locate where the loop that iterates through all pixels are located.

a. The loop is located in function in render_world.cpp

4. Cast_Ray function in render_world.cpp returns the color of the pixel using the shader of the closest object it
intersects with. Find the function in render_world.cpp and fill below.
a. Cast_Ray function is implemented in render_world.cpp starting from line #

b. Cast_Ray function is called function in render_world.cpp.

5. Closest_Intersection function will be used in Cast_Ray function to find the closest object that intersects
with the ray and (if any) provide it’s intersection information (in a Hit object, hit).
Find the function in render_world.cpp, read its comments and fill below.

a. Closest_Intersection function is implemented in render_world.cpp starting from line #

b. The input/output parameter,hit , should store

c. Any intersection with t <= small_t should be , Where t is the distance to

intersection.

6. Intersection function is a function of the Object class (object.h) which is a base class for scene objects such
as plane and sphere. This function is overloaded by these classes and should return true if the object
intersects with the ray, and fill the hits input/output parameter with all the intersections. See the Intersection

functions in Sphere and Plane classes.

Name: SID: 4

LAB 2 - Introduction to Ray Tracing (Assignment 1)

How to compile & run:

Compile: make

Run test N (00-37) with opengl display: . /ray tracing preview -i ./tests/N.txt

Compare test N (00-37) with ground truth:. /ray tracing -i ./tests/N.txt -s ./tests/N.png
Run grading script: ./grading-script.py ./tests

Functions to implement for this lab:
- camera.cpp: World_Position
- render world.cpp: Render Pixel (only ray construction)
- sphere.cpp: Intersection: returns all the intersections of the ray and the sphere.
- render world.cpp: Closest Intersection
- render_world.cpp: Cast_Ray
NOTE: the code mostly uses “double” for floating numbers

Important Classes:

render_world.h/cpp:

class Render_World: //Stores the rendering parameters such as
std: :vector<Object*> objects //list of objects in the scene
std::vector<Light*> lights; //list of lights in the scene
Camera camera; //the camera object (see below)

camera.h/cpp:
class Camera: // Stores the camera parameters, such as
// camera position, screen horizontal and vertical vectors etc.

hit.h:
class Hit: //Stores the ray object intersection information such as

double t; //t parameter of the ray for intersection point (also the distance to the
endpoint)

bool is_exiting; // stores if the ray is exiting or entering the object that it hit

ray.h:
class Ray // stores ray parameters: end_point, direction
vec3 Point(double t); // stores if the ray is exiting or entering the object that it hit

sphere.h/cpp:
class Sphere // Stores sphere parameters (center, radius)

plane.h/cpp:
class Plane // Stores plane parameters (x0, normal)

Name: SID:

Tips:

Note: The tips are only for the minimum requirement of the Llab. You might
need to change the code for the latter steps of the assignment.

World position of a pixel (camera.cpp):
As you remember from the last week, the world position of a pixel can be calculated by the following formula:

F,+uC,+v C,

- u: horizontal vector, v: vertical vector, and Fp . film _position (bottom left corner of the screen)
- (' of type vec2, can be obtained by Cell Center (pixel index) //see camera.h

Constructing the ray (Render_Pixel function):
end_point : camera position (from camera class)
direction: a unit vector from the camera position to the world position of the pixel.
vec3 class has normalized() function that returns the normalized vector;

e.g (vl-v2) .normalized()

Closest_Intersection:
Read the comments in the code for description. The pseudo code is given below

Set min_t to a large value (google std numeric_limits)
For each object in objects:

Create an empty list of hits

use object.Intersect to fill the hits

For each h in list of hits:

If h is closest so far (i.e. with smallest t, that is larger than small_t)
Set the object as closest_object, set hit to h and update min_t

return closest object

Intersection in sphere.cpp:
Use the equations in Pre-Lab Part 1 to check if there is an intersection
If so, compute t1 and t2 and, create Hit objects hitl (if t1>0) , and hit2 and append them to hits vector

Cast_Ray:
Get the closest object, obj, intersecting with the ray using Closest_Intersection function
if there is an intersection:
To set the “color” variable, call obj’s material shader’s Shade Surface function that calculates and returns
the color of the ray/object intersection point.
Shade Surface function requires (ray,intersect,normal,recursion_depth) for parameters.
For flat shading (tests 00-04) you can use a dummy vec3, or any available vec3, for intersect and normal.
E.g.
vec3 dummy;
color=obj->material shader->Shade Surface (ray,dummy,dummy, 1, false);
This code, with dummy vectors, would not work for any tests after 04.txt
else:
Use background_shader of render_world class. The background shader is a flat shader so you can use
the dummy vector as above.
vec3 dummy;
color=background shader->Shade Surface (ray,dummy,dummy, 1, false);

Note: flat_shading class is already fully implemented.

Name: SID:

https://www.codecogs.com/eqnedit.php?latex=F_p%2Bu%5C%20C_x%20%2B%20v%20%5C%20%20C_y%0
https://www.codecogs.com/eqnedit.php?latex=u%0
https://www.codecogs.com/eqnedit.php?latex=v%0
https://www.codecogs.com/eqnedit.php?latex=F_p%0
https://www.codecogs.com/eqnedit.php?latex=C%0

