CSI 30 : Computer Graphics Lecture 9:Texture Mapping (cont.)

Tamar Shinar
Computer Science \& Engineering
UC Riverside

The major issues in texture mapping...

- What should the actual mapping be?

easy: rectangular surface

harder: parametric surface

Teapot: Which image looks better? The image on the left uses object coordinates in the texture mapping - this makes more sense. The image on the right uses world coordinates - texture ends up changing relative to the object want a nice map that doesn't look distorted

Given a point on the object ($\mathbf{x}, \mathbf{y}, \mathbf{z}$), what point (\mathbf{u}, \mathbf{v}) in the texture we use?

Example: planar mapping

Intermediate surfaces

First map the texture to a simpler, intermediate surface

Cylindrical mapping

$$
(x, y, z)->(\text { theta, h) -> (u,v) }
$$

[Rosalee Wolfe]

- note "pie slice" phenomena
- which coordinate axis is parallel to the cylinder axis?

Spherical Mapping

(x,y,z) -> (latitude,longitude)
 $$
->(u, v)
$$

[Rosalee Wolfe]

spherical map stretches squares at equator and squeezes squares at poles

Box Mapping

- similar to planar mapping
- planar projection -- choose which plane to project onto

How do we map between

 intermediate and actual objects?

We associated (x, y, z) on the intermediate object with the texture (u, v). But which point on the actual object is this? We choose both the intermediate shape and the mapping from the actual shape to the intermediate shape

1. a point on the object relative to its bounding box
2. see where surface normal intersects intermediate surface
3. shoot ray from centroid through surface point to intermediate surface
4. use the reflection vector (depends on the viewer position and normal)

How do we map between intermediate and actual objects?

What
intermediate
shape was used here?

Cylindrical
Spherical

Parametric Surfaces

32 parametric patches

3D solid textures

can map object (x, y, z) directly to texture (u, v, w)

Procedural textures

e.g., Perlin noise

Triangles

Texturing triangles

Object Space

Multitexturing

Texture Sampling

Texture Mapping

Texels
Pixels

- Texture coordinates: Used to identify points in the image to be mapped
- Object Coordinates: Conceptually, where the mapping takes place
- Window Coordinates: Where the final image is really produced

Point Sampling

Map back to texture image and use the nearest texel

Aliasing

Point sampling of the texture can lead to aliasing artifacts

miss blue stripes

point samples in

(or x, y, z) space
[Angel and Shreiner]
point samples in texture space

Magnification and Minification

Magnification and Minification

More than one texel can cover a pixel (minification) or more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering (2×2 filter) to obtain texture values

Texture
Magnification

Texture
Pixels
Minification

Aliasing artifacts

We apply filtering to reduce aliasing artifacts

Area Averaging

A better but slower option is to use area averaging

Use bilinear filtering

nearest
neighbor
bilinear

Wikipedia
bicubic

mitigate magnification artifacts

$$
p=?
$$

Mipmapping

Togikun,Wikimedia Commons

Reduce minification artifacts
Prefilter the texture to obtain reduced resolutions

Requires I/3 more space
Get a texture hierarchy indexed by level

