CS130 : Computer Graphics

Lecture 8: Lighting and Shading (cont.)

Tamar Shinar
Computer Science & Engineering

UC Riverside

Shading Polygonal Geometry

Smooth surfaces are often
approximated by polygons

Shading approaches:

|. Flat
2. Smooth (Gouraud)
3. Phong

each polygon is flat and has a well-defined normal

Flat Shading

do the shading valid for light at oo
calculation once and viewer at oc
per polygon and faceted surfaces

In general, |, n, and v vary from point to point on a surface. If we assume a distant viewer, v
can be thought of as constant. If we assume a distant light source, | can be thought of as

constant. For a flat polygon, n is constant.

If the light source or viewer is not at inf, we need heuristic for picking color - e.qg., first
vertex, or polygon center

Mach Band Effect

Perceived intensity—_

N

R

Actual intensity

Flat shading doesn’t usually look too good.
The lateral inhibition effect makes flat shading seem even worse.

111 — 1o — 113 — Iy
1l =
ny +ny +1n3 +ny|
n
A
n
2 n
n] 23 4
do the shading \ -
calculation once e f— N
per vertex t B 7 TR

We assign the vertex normals based on the surrounding polygon normals

Interpolating Normals

* Must renormalize

n

Interpolating Normals

* Must renormalize

Interpolating Normals

* Must renormalize

VVe can interpolate attributes
using barycentric coordinates

C = acp + PC1 + YC2

+n//itibhhle Avn ~ ~rclor- hicc/loarcdQ7/ PaX & 87 hetrmli
1 I...\Jlél_él } MICo7/C T CO'T 1 %L-Q 7 J0TCnnl

llllllllllllll

(@)
v

10

Using barycentric coordinates also has the advantage that we can easily interpolate colors or
other attributes from triangle vertices

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html
http://jtibble.dyndns.org/graphics/eecs487/eecs487.html

A

Ng

do the shading
calculation once
per fragment

Phong shading requires normals to be interpolated across each polygon -- this wasn’t part of
the fixed function pipeline.
This can now be done in the pipeline in the fragment shader.

Comparison

- Phong interpolation looks smoother -- can see edges on the Gouraud model
— but Phong is a lot more work

- both Phong and Gouraud require vertex normals

- both Phong and Gouraud leave silhouettes

[Foley, van Dam, Feiner, Hughes]

Problems with Interpolated
Shading

Polygonal silhouette

Perspective distortion

Orientation dependence

Unrepresentative surface normals

Programmable Shading

Fixed-Function Pipeline

[
[
[
: 2D screen

imiti coordinates -
User primitves 1 | Geometry Pixel
Program Processing Processing

CPU GPU

Control pipeline through GL state variables

— The application supplies geometric primitives through a graphics APl such as OpenGL or
DirectX
- control of pipeline operation through state variables only

Programmable Pipeline

2D screen
imiti coordinates -
User primitives Geometry Pixel
Program Processing Processing

vertex shader

pixel shader

CPU

GPU

Supply shader programs to be executed on GPU
as part of pipeline

- can supply shader programs to carry out vertex processing, geometry processing, and pixel
processing

Phong reflectance in vertex and pixel shaders using GLSL

void main(void)

{

vecd
vec3
vec3
vec3

gl_modelView_Matrix * gl_Vertex;
normalize(gl_NormalMatrix * gl_Normal);
normalize(gl_lightSource[@].position - v);
normalize(l - normalize(v));

float p
vec4 cr
vecd cl
vec4 ca

16;

gl_FrontMaterial.diffuse;
fl_LightSource[@].diffuse;
vec4(0.2, 0.2, 0.2, 1.0);

vec4 color;
1f (dotCh,n) > @)
color = cr * (ca + cl * max(@,dot(,n,1)))
+ cl* pow(dotCh,n), p);
else
color = cr * (ca + cl * max(@,dot(,n,1)));

gl_FrontColor = color;
gl_Position = ftransform();

varying vec4 v;
varying vec3 n;

void main(void)

{
vec3 1 normalize(gl_lightSource[@].position - Vv);
vec3 h normalize(l - normalize(v));

float p
vec4 cr
vecd cl
vec4d ca

16;

gl_FrontMaterial.diffuse;
fl_LightSource[@].diffuse;
vec4(0.2, 0.2, 0.2, 1.0);

vec4 color;
if (dotCh,n) > @)
color = cr * (ca + cl * max(@,dot(,n,1)))
+ cl* pow(dotCh,n), p);
else
color = cr * (ca + cl * max(@,dot(,n,1)));

[4auydsJely pue ASu1yS]

gl_FragColor = color;

Phong reflectance as a vertex shader

- vertex shaders can be used to move/animate verts

- linear interpolation of vertex lighting

as a fragment shader

- each fragment is calculated individually - don’t know about neighboring pixles

Rusty car shader, NVIDIA

Dawn, NVIDIA

Programmable shader examples from NVIDIA and ATI

Computing Normal Vectors

Plane Normals

v = (P2 — Po) X (P1 — Po)

\%
n—= —-
v

Implicit function normals

f(p) =0 sphere
p-p—7° =0

plane |
n-(p—po) =0

Vf(p)

Vf

<

|
~

HESESE

Parametric form

tangent op op

vectors ou Ov
op ., Op
normal O

ou
o0 0
13a % 3l

Texture Mapping

There are limits to geometric
modeling

http://www.beinteriordecorator.com \

k

National Geographic

Although modern GPUs can render millions of triangles/
sec, that’s not enough sometimes...

http://www.beinteriordecorator.com
http://www.beinteriordecorator.com

Use texture mapping to
increase realism through detail

This image is just 8 polygons!

Add visual complexity.

http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/
r_wolfe_mapping_1.htm

[Angel and Shreiner]

No texture

With texture

Store 2D images in buffers and lookup
pixel reflectances

)
-«

oF

Y
X
&
)
N
8
S
s}
Y
Y

Vertices ——

1 _\L\
=]
S
o
(ep]
(7]
w
«
=)
(]
o]
S
o
(ep]
(q°]
w
«»
=
(@]
o
—
—

procedural

Textures can be anything that you can lookup values in -- photo, procedurally generated, or
even a function that computes a value on the fly

3D solid textures

[Dong et al., 2008]

Other uses of textures...

Light maps

Shadow maps

Environment
maps

Bump maps

Opacity maps

Animation

[49uia4ys pue |93uy]

[66 weig]

Texture mapping in the
OpenGL pipeline

Geome.try Rasterization Fragmgnt Frame
processing processing buffer

Pixel /

processing

Vertice§ ———

Pixels

® Geometry and pixels have separate paths through
pipeline

® meet in fragment processing - where textures are
applied

® texture mapping applied at end of pipeline - efficient
since relatively few polygons get past clipper

uv

3-D Model UV Map

lllllllllllllllll

Tschmits Wikimedia Commons

(e, V)

® Texture is parameterized by (u,v)

® Assign polygon vertices texture coordinates

® |nterpolate within polygon

(Ua, Va)

Texture coordinates are per-vertex data - a position in the (u,v) space
can interpolate tex coordinates with barycentric coordinates

(0.5,1.5) (1.5, 0.5)

v

u=0.25 u=05
v=0.25

