Hidden Surface Removal
Occlusion

“painter’s algorithm”
draw primitives in back-to-front order
Occlusion

“painter’s algorithm”
draw primitives in back-to-front order

problem:
triangle intersection
Occlusion

“painter’s algorithm”
draw primitives in back-to-front order

problem:
occlusion cycle
Use a z-buffer for hidden surface removal

at each pixel, record distance to the closest object that has been drawn in a depth buffer
Use a z-buffer for hidden surface removal

at each pixel, record distance to the closest object that has been drawn in a depth buffer
Use a z-buffer for hidden surface removal

Figure 1. Block diagram of OpenGL.
Use a z-buffer for hidden surface removal

http://www.beyond3d.com/content/articles/41/
Backface culling: another way to eliminate hidden geometry
Hidden Surface Removal in OpenGL

```c
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glEnable(GL_DEPTH_TEST);

glEnable(GL_CULL_FACE);
```

For a perspective transformation, there is more precision in the depth buffer for z-values closer to the near plane
Transformation Matrices
<whiteboard>
2D Transformations
Uniform Scale

\[
\begin{pmatrix}
 s & 0 \\
 0 & s
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
=
\begin{pmatrix}
 sx \\
 sy
\end{pmatrix}
\]
Nonuniform Scale

\[
\begin{pmatrix}
 s_x & 0 \\ 0 & s_y \\
\end{pmatrix}
\begin{pmatrix}
 x \\ y \\
\end{pmatrix} =
\begin{pmatrix}
 s_xx \\ s_yy \\
\end{pmatrix}
\]
Rotation

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
\end{pmatrix} =
\begin{pmatrix}
x \cos \theta - y \sin \theta \\
x \sin \theta + y \cos \theta \\
\end{pmatrix}
\]
Reflection

\[
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
-x \\
y
\end{pmatrix}
\]
Shear

\[
\begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
x + ay \\
y
\end{pmatrix}
\]
Translation

\[
\begin{pmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
1
\end{pmatrix}
=
\begin{pmatrix}
x + t_x \\
y + t_y \\
1
\end{pmatrix}
\]
Noncommutativity

translate, rotate

rotate, translate
Viewing Transformations
Viewing transformations

- Move objects from their 3D locations to their positions in a 2D view
Decomposition of viewing transforms

- **Camera transform**
 - rigid body transformation
 - place camera at origin

- **Projection transform**
 - x, y, z in $[-1, 1]$
 - depends on type of projection

- **Viewport transform**
 - map to pixel coordinates

Viewing transforms depend on: camera position and orientation, type of projection, field of view, image resolution
Viewport transform

\[(x, y, z) \rightarrow (x', y', z')\]

\[(x, y, z) \in [-1, 1]^3 \quad x' \in [-0.5, n_x - 0.5]\]

\[y' \in [-0.5, n_y - 0.5]\]
Viewport transform

World space → Camera transform → Projection transform → Viewport transform

M_{vp}