CSI30 : Computer Graphics Lecture 4: Rasterizing Triangles and Graphics Pipeline (cont.)

Tamar Shinar Computer Science & Engineering UC Riverside

Triangle rasterization

Triangle rasterization issues

Who should fill in shared edge?

Who should fill in shared edge?

Use Midpoint Algorithm for edges and fill in?

Use an approach based on barycentric coordinates

We can interpolate attributes using barycentric coordinates

for all x do for all y do compute (α, β, γ) for (x,y)if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

for all x do for all y do compute (α, β, γ) for (x,y)if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

use a bounding rectangle

for x in [x_min, x_max] for y in [y_min, y_max] compute (α, β, γ) for (x,y) if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

for x in [x_min, x_max] for y in [y_min, y_max] $\alpha = f_{bc}(x, y) / f_{bc}(x_a, y_a)$ $\beta = f_{ca}(x, y) / f_{ca}(x_b, y_b)$ $\gamma = f_{ab}(x, y) / f_{ab}(x_c, y_c)$ if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

<whiteboard>

Optimizations?

for x in [x min, x max] for y in [y_min, y_max] $\alpha = f_{bc}(x, y) / f_{bc}(x_a, y_a)$ $\beta = f_{ca}(x, y) / f_{ca}(x_b, y_b)$ $\gamma = f_{ab}(x, y) / f_{ab}(x_c, y_c)$ if $(\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

Optimizations?

for x in [x min, x max] for y in [y_min, y_max] $\alpha = f_{bc}(x, y) / f_{bc}(x_a, y_a)$ $\beta = f_{ca}(x, y) / f_{ca}(x_b, y_b)$ $\gamma = f_{ab}(x, y) / f_{ab}(x_c, y_c)$ if $(\alpha \ge 0 \text{ and } \beta \ge 0 \text{ and } \gamma \ge 0)$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel(x,y) with color c

make computation of bary. coords. incremental color can also be computed incrementally don't need to check upper bound

Graphics Pipeline (cont.)

Graphics Pipeline

Transform

"Modelview" Transformation

Projection: map 3D scene to 2D image

OpenGL Super Bible, 5th Ed.

Orthographic projection

OpenGL Orthogonal Viewing

glOrtho(left,right,bottom,top,near,far)

Perspective projection

OpenGL Perspective Viewing

glFrustum(xmin,xmax,ymin,ymax,near,far)

Clip against view volume

Clipping against a plane

What's the equation for the plane through **q** with normal **N**?

implicit line equation:

$$f(\mathbf{X}) = \mathbf{N} \cdot (\mathbf{X} - \mathbf{X}_0) = 0$$

Clipping against a plane

What's the equation for the plane through **q** with normal **N**?

$$f(\mathbf{p}) = ? = 0$$

<whiteboard>

Clipping against a plane

What's the equation for the plane through **q** with normal **N**?

$$f(\mathbf{p}) = \mathbf{N} \cdot (\mathbf{p} - \mathbf{q}) = 0$$

Intersection of line and plane

How can we distinguish between these cases?

Intersection of line and plane

Intersection of line and plane

How can we find the intersection point?

<whiteboard>

Clip against view volume

$$s = \frac{\mathbf{N} \cdot (\mathbf{q} - \mathbf{c})}{\mathbf{N} \cdot (\mathbf{b} - \mathbf{c})}$$

$$t = \frac{\mathbf{N} \cdot (\mathbf{q} - \mathbf{a})}{\mathbf{N} \cdot (\mathbf{b} - \mathbf{a})}$$

need to generate new triangles

