
CS130 : Computer Graphics
Lecture 3: Rasterizing Lines and Triangles

Tamar Shinar
Computer Science & Engineering

UC Riverside

Rendering approaches

1. object-oriented

foreach object ...

2. image-oriented

foreach pixel ...

vertices image3D rendering
pipeline

Outline

rasterization - make fragments from clipped objects

clipping - clip objects to viewing volume

hidden surface removal - determine visible fragments

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

What is rasterization?

Rasterization is the process of determining
which pixels are “covered” by the primitive

What is rasterization?

input: primitives output: fragments

enumerate the pixels covered by a primitive

interpolate attributes across the primitive

Vertex
processor

Clipper and
primitive
assembler

Rasterizer
Fragment
processorVertices Pixels

Rasterization

Compute integer coordinates for pixels covered by
 the 2D primitives

Algorithms are invoked many, many times and
so must be efficient

Output should be visually pleasing, for example,
lines should have constant density

Obviously, they should be able to draw all
possible 2D primitives

Screen coordinates

Line Representation

Implicit Line Equation

<whiteboard>

Implicit Line Equation

decision variable, d

Implicit Line Equation

decision variable, d

Implicit Line Equation

decision variable, d

Implicit Line Equation

decision variable, d

Line Drawing

Which pixels should be used
to approximate a line?

Draw the thinnest possible
line that has no gaps

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

Line drawing algorithm

y = y0
for x = x0 to x1 do
 draw(x,y)
 if (<condition>) then
 y = y+1

(case: 0 < m <= 1)

•move from left to right
•choose between

(x+1,y) and (x+1,y+1)

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:
<whiteboard>

Use the midpoint between the
two pixels to choose

implicit line equation:

evaluate f at midpoint:

Line drawing algorithm
(case: 0 < m <= 1)

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

We can make the Midpoint
Algorithm more efficient

y = y0
for x = x0 to x1 do
 draw(x,y)
 if () then
 y = y+1

We can make the Midpoint
Algorithm more efficient

by making it incremental!

We can make the Midpoint
Algorithm more efficient

We can make the Midpoint
Algorithm more efficient

We can make the Midpoint
Algorithm more efficient

y = y0
d = f(x0+1,y0+1/2)
for x = x0 to x1 do
 draw(x,y)
 if (d<0) then
 y = y+1
 d = d+(y0-y1)+(x1-x0)
 else
 d = d+(y0-y1)

Adapt Midpoint Algorithm for
other cases

case: 0 < m <= 1

Adapt Midpoint Algorithm for
other cases

case: -1 <= m < 0

Adapt Midpoint Algorithm for
other cases

case: 1 <= m
or m <= -1

Line drawing references

• the algorithm we just described is the Midpoint Algorithm
(Pitteway, 1967), (van Aken and Novak, 1985)

• draws the same lines as the Bresenham Line Algorithm
(Bresenham, 1965)

Triangles

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

barycentric coordinates

What are ?

<whiteboard>

