CSI30 : Computer Graphics Lecture 16: Curves (cont.)

Tamar Shinar Computer Science & Engineering UC Riverside

Cubic Hermite Curves

Cubic Hermite Curves

Specify endpoints and derivatives

construct curve with C^1 continuity

Hermite blending functions

$$b_0(u) = 2u^3 - 3u^2 + 1$$

$$b_1(u) = -2u^3 + 3u^2$$

$$b_2(u) = u^3 - 2u^2 + u$$

$$b_3(u) = u^3 - u^2$$

Example: keynote curve tool

Interpolating vs. Approximating Curves

Interpolating

Approximating (non-interpolating)

approximating

Cubic Bezier Curves

-The curve interpolates its first (u=0) and last (u = 1) control points - first derivative at the beginning is the vector from first to second point, scaled by degree

Cubic Bezier Curve Examples

Cubic Bezier blending functions

Bezier Curves Degrees 2-6

Bernstein Polynomials

•The blending functions are a special case of the Bernstein polynomials

$$b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k}$$

- •These polynomials give the blending polynomials for any degree Bezier form
 - -All roots at 0 and 1
 - -For any degree they all sum to 1
 - -They are all between 0 and 1 inside (0,1)

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

- curve lies in the convex hull of the data
- variation diminishing
- symmetry
- affine invariant
- efficient evaluation and subdivision

Joining Cubic Bezier Curves

for C1 continuity, the vectors must line up and be the same length for G1 continuity, the vectors need only line up

Bezier subdivision

de Casteljau algorithm Left: Subdivide the curve at the point u=.5

Recursive Subdivision for Rendering

Surfaces

Parametric Surface

Parametric Surface tangent plane

 $\begin{pmatrix} \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial z} \end{pmatrix}$ $\mathbf{t}_u =$ $\frac{\frac{\partial x}{\partial v}}{\frac{\partial y}{\partial v}}$ \mathbf{t}_v

Bicubic Surface Patch

Bezier Surface Patch

$$\mathbf{f}(u,v) = \sum_{i} \sum_{j} b_i(u) b_j(v) \mathbf{p}_{ij}$$

Patch lies in convex hull

