CS130 : Computer Graphics
Winter 2013

Tamar Shinar
Computer Science & Engineering

UC Riverside

‘Welcome to CS130!

TAVAVAYAVATA
TAVAVAVAY)

” g

\\ T: ’:555‘

N/
NG |
' ""‘7“%\&%% A
A"@Vé\\\‘%ﬁ%gg,

<7

Examples of different works in graphics. Clockwise: procedural modeling, scientific

visualization, geometric modeling, live action special effects, animated special effects,
physics-based special effects research, rendering

Today’s agenda

Course logistics
Introduction: graphics areas and applications
Introduction to OpenGL

Math review

Course Overview

® | earn fundamental 3D graphics concepts
® |mplement graphics algorithms
® make the concepts concrete

® expand your abilities and confidence for future work

Course Logistics

Instructor: Tamar Shinar

TA: Steve Cook

Website: http://www.cs.ucr.edu/~scook005/cs |30

Piazza: https://piazza.com/ucr/winter2013/cs|130/home
Lectures: TuTh 9:40-1 lam
Lab: M 2:10-5:00pm

announcements (assignments, etc.) made in class and on
course website

http://www.cs.ucr.edu/~shinar/courses/cs230
http://www.cs.ucr.edu/~shinar/courses/cs230
https://piazza.com/ucr/winter2013/cs130/home
https://piazza.com/ucr/winter2013/cs130/home

Course Logistics

® Grading
® |0% labs
® [0% homework
® 30% assignments (2 assignments, |5% each)
® 50% tests (2 midterms, | final)

® Detailed schedule on class website

Course schedule

tentative; see course website for up-to-date schedule

Lecture | Date | Topic Reading Assigned Due
4/2 Introduction Chapters 1 Homework 1
4/4 Graphics Pipeline Chapter 3, and Section 8.0
3 4/6 Math Review Sections 2.3,2.4
Lab1 4/2 Introduction to OpenGL
4/9 2D Line Rasterization Section 8.1.1 and Subsection "Implicit 2D Lines" (of Section 2.5) | Homework 2 Homework 1 due
4/11 | Polygons Sections 2.7, 8.1.2
6 4/13 Polygons (continued) Sections 8.1.3, 8.1.6, 8.2.0-8.2.3 (except "Precision Issues")
Lab2 4/9 Line Rasterization
7 4/16 | Transformation Matrices Sections 6.1.0-6.1.5,6.3 Homework 3 Homework 2 due
8 4/18 | Transformation (cont.) Assignment 1
9 4/20 | Transformations (cont.)
Lab3 4/16 | Transformations
10 4/23 | Projection Chapter 7 Homework 4
11 4/25 | Projection /Review Homework 3 Solutions(updated)
- 4/27 Test 1
Lab4 4/23 | 3D Modeling
12 4/30 | Shading Chapter 10 Homework 5
13 5/2 Shading (cont.)
14 5/4 Shading (cont.) Chapter 11
Lab5 4/30 | Programmable Shading
15 5/7 Texture mapping
16 5/9 Texture mapping (continued) Homework 6
17 5/11 | Texture mapping (continued) Assignment 1 due (due on Fr
Lab 6 5/7 Texture Mapping
18 5/14 | Rotations Chapter17.2.2 Homework7 | Homework 6 due
19 5/16 | Animation and Review Chapter 17
- 5/18 Test 2
Lab 7 5/14 | SLERP
20 5/21 | Ray Tracing Chapter 4 Assignment2 | Homework 7 due

Textbook

Fundamentals

Fundamentals of Computer Graphics

Shirley and Marschner

OpenGL i INTERACTIVE ’
}l rogramming Guide COMPUTER Computer Graphlcs
et Guide to Learin GRAPHICS webdon 1]

A TOF-DEWN AFPROACH =
] | Baker
\ Carithers

WITH SHADE-BASED

Additional
books

- EUNARD ANGEL = DAYE SHREINER

if you like using a book
- red book older version online:http://fly.cc.fer.hr/~unreal/theredbook/

About your instructors

B.S., University of lllinois in Urbana-Champaign,
Mathematics, Computer Science, Art

Ph.D., 2008, Stanford University on simulation methods
for computer graphics

Started at UCR in the fall of 201 |

Work in graphics simulation and biological simulation

http://www.cs.ucr.edu/~shinar

http://www.cs.ucr.edu/~scook005

http://www.cs.ucr.edu/~shinar
http://www.cs.ucr.edu/~shinar
http://www.cs.ucr.edu/~shinar
http://www.cs.ucr.edu/~shinar

Introduction

Graphics applications

2D drawing
Drafting, CAD
Geometric modeling
Special effects
Animation

Virtual Reality

Games
Educational tools
Surgical simulation

Scientific and
information
visualization

Fine art

Graphics areas

e Modeling - mathematical representations of
physical objects and phenomena

® Rendering - creating a shaded image from 3D
models

¢ Animation - creating motion through a
sequence of images

e Simulation - physics-based models for modeling
dynamic environments

Modeling and rendering are separate stage
- first design and position objects -- modeling
- then add lights, materials properties, effects —- rendering

Modeling

‘@00 PhysBAM geometry viewer

PhysBAM geometry viewer

Talton et 2 F b

VAV
AT ATAYAVA
\VAVAVAVAY)
AVLVAVAYA
A

%
4 g’ﬂ L

e

AV

>4

4- ,

4
S,

VAVAN
S
<X

\

W G

|~
AN

Z)
)
N

ZAVAVAN

W’
KA
NN
AN
ENRRS
s Sl

N

‘A
gv

4
!

)
A
B

<] ':-::i‘-‘:_A

AV A~

Schroder, 200

- subdivision surface - Siggraph course notes 2000

- Teddy : sketch based interface for 3D modeling

- Talton et al. —- procedural modeling - for games, virtual worlds, design, etc.
- combine machine learning and graphics

- Bronstein - reasoning about geometric models for search

Rendering

PhysBAM geometry viewer

®NO

»* " '
| _SSEE - > - -

Henrik WWann Jensen

- opengl - 3D graphics (z-buffer) rendering

- teapot - image-based lighting - illuminated by a high dynamic range environment -
metal, glass, diffuse, and glossy

- subsurface scattering - to capture translucent materials such as skin and marble

- rendering a emissive material such as fire — participating medium - scattering, absorption
- local vs global illumination

— direct vs. global illumination

— direct vs. global illumination

Animation

Animation

Adventures of ‘Weta 20

.

> ——

~

P70 R . W=
Monsters Inc, Pixar, 2001 = Life of Pi,2012 . ~

—

Simulation

© Disney

The Perfect Storm, ILM
Firestorm, Harry Potter and the Half-Blood Prince
Lord of the Rings, FOTR River Scene

Firestorm
Harry Potter and the Half Blood Prince
Industrial Light + Magic

Firestorm
Harry Potter and the Half Blood Prince
Industrial Light + Magic

fluid simulation in Pixar’s Ratatouille

in Pixar’s Ratatouille

fluid simulation

Introduction to

OpenGL

Introduction to

® Open Graphics Library, managed by Khronos Group
® A software interface to graphics hardware (GPU)

® Standard AP| with support for multiple languages and
platforms, open source

® ~250 distinct commands
® Main competitor: Microsoft’s Direct3D

® http://www.opengl.org/wiki/Main Page

— used to produce interactive 3D graphics

- sits between programmer and 3D accelerators in hardware

- standard requires support for feature set for all implementations

- Both OpenGL and Direct3D support feature sets —-- they take advantage of hardware
acceleration or use software emulation when a feature is unavailable in hardware

— Direct3D is proprietary

- OpenGl and Direct3D both implemented in the display driver

http://www.opengl.org/wiki/Main_Page
http://www.opengl.org/wiki/Main_Page

OpenGL - Software to Hardware

» Silicon Graphics (SGI) revolutionized the
graphics workstation by putting graphics
pipeline in hardware (1982)

* To use the system, application
programmers used a library called GL

» With GL, it was relatively simple to
program three dimensional interactive
applications

22

OpenGL

* The success of GL lead to OpenGL
(1992), a platform-independent API that
was
- Easy to use
- Close to the hardware - excellent performance
- Focus on rendering

- Omitted windowing and input to avoid window
system dependencies

23

OpenGL: Conceptual Model

Real Object

24

OpenGL: Conceptual Model
O

; Real Light

Human Eye

Real Object

Human Eye

Real Object
Display
Device

Graphics System

25

What can OpenGL do!?

Examples from the
OpenGL Programming Guide (“red book™)

—
———l
e

=

ramming Guide.~

T

- Wireframe models
- shows each object made up of polygons
- the lines are are the edges and the faces of the polygons make up the object surface

| e —
= -‘-'11_!.. . -

AWM T T O 2
g _““'23.4...5.:'.'

.’:;"‘I"Q'.’ -

~

S

L —
‘.«a-—" -
_'T..'l-'* ——

3
o L
-
. -—
— 2

A
-
—

AOpenGL Programming Guide i — |

R S———-

Plate 3. The same scene with antialiased lines that smooth the jagged edges. See Chapter 7 .

when you approximate smooth edges using pixels, this leads to jagged lines
especially with near vertical and near horizontal lines

OpenGL Programming Guide

Plate 4. The scene drawn with flat-shaded polygons (a single color for each filled polygon). See
Chapter S .

“unlit scene”

R Y
Agataaniad ey FAA SN

P L b

3
. .
) g .)
i J 4
) “ /\
|. > b
»
A N
o .‘ » »
i s
» ., s
‘& »

i
’4
‘
¥
LA
} Z
f
i
: .
<
$
3
Be HESE
) s S
VRO AV v Y VIR POV a s
F o e A e et s pRARL RN bR
8 e O
4 £..0 .8 >
)
R)
RIS
Seht
:
.
4)
o S Ll
AL
AL ot
LY ."..\-:.-\-,,v
® » R Lt i
~ ® ° - e i 100 Wi
» ® d q ' BIEHEL S s st s

Plate 5. The scene rendered with lighting and smooth-shaded polygons. See Chapter 5 and Chapter 6 .

OpenGL Programming Guide

Plate 6. The scene with texture maps and shadows addd. See hater 9 and Cater 13 .

OpenGL Programming Guide

Plate 7. The scene drawn with one of the objects motion-blurred. The accumulation buffer is used to
compose the sequence of images needed to blur the moving object. See Chapter 10 .

>N W P i
o YO s

Plate 8. A clo

Se—up shot - the scene is rendered from a new VieWpoint. See Chapter 3 .

OpenGL state machine

® put OpenGL into various states
® e.g,current color, current viewing transformation
® these remain in effect until changed
® gl|Enable(), gIDisable(), glGet(), gllsEnabled()

® gl|PushAttrib(), glPopAttrib() to temporarily modify
some state

OpenGL command syntax

® commands: glClearColor();
® gl|Vertex3f()
® constants: GL_COLOR_BUFFER BIT
e types: GLfloat, GLdouble, GLshort, GLint,

Simple OpenGL program

#include <whateverYouNeed.h>
main() {
InitializeAWindowPlease();

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear (GL COLOR BUFFER BIT);
glColor3f(1.0, 1.0, 1.0);

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glBegin(GL_ POLYGON) ;

glvertex3f(0.25, 0.25, 0.0);
glvertex3f(0.75, 0.25, 0.0);
glvertex3f(0.75, 0.75, 0.0);
glvertex3f(0.25, 0.75, 0.0);

glEnd();
glFlush();

UpdateTheWindowAndCheckForEvents() ;

OpenGL Programming Guide, 7th Ed.

- blue are placeholders for windowing system commands
- clear color, actual clear

- Ortho - the coordinate system

— flush executes the commands

OpenGL Libraries

*OpenGL core library (gl.h)
-OpenGL32 on Windows
-GL on most unix/linux systems

*OpenGL Utility Library -GLU (glu.h)

-avoids having to rewrite code

*OpenGL Utility Toolkit -GLUT (glut.h)

-Provides functionality such as:
Open a window

Get input from mouse and keyboard
Menus

37

- GL
- no windowing commands
- no commands for higher-level geometry - you build these using primitives (points, lines,
polygons)
- GLU - standard in every implementation
- OpenGL Utility library provides modeling support
- quadratic surfaces, NURBS curves and surfaces

Software Organization

application program

|

|

|

OpenGL Motif
widget or similar

X windows

GLUT

GLU

GL

|

|

software and/or hardware

38

Simple OpenGL program

#include <whateverYouNeed.h>
main() {
InitializeAWindowPlease();

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear (GL COLOR BUFFER BIT);
glColor3f(1.0, 1.0, 1.0);

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glBegin(GL_ POLYGON) ;

glvertex3f(0.25, 0.25, 0.0);
glvertex3f(0.75, 0.25, 0.0);
glvertex3f(0.75, 0.75, 0.0);
glvertex3f(0.25, 0.75, 0.0);

glEnd();
glFlush();

UpdateTheWindowAndCheckForEvents() ;

OpenGL Programming Guide, 7th Ed.

- blue are placeholders for windowing system commands
—can replace blue code with calls to glut

Simple OpenGL program

void init() {
glClearColor(0.0, 0.0, 0.0, 0.0);
}

void display() {
glClear (GL_COLOR_BUFFER BIT);
glColor3f(1.0, 1.0, 1.0);
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glBegin(GL POLYGON) ;

glvertex3f(0.25, 0.25, 0.0);
glvertex3f(0.75, 0.25, 0.0);
glvertex3f(0.75, 0.75, 0.0);
glvertex3f(0.25, 0.75, 0.0);

glEnd();
glFlush();

}

main() {
glutInit(&argc, argv);
glutInitDisplayMode (GLUT SINGLE | GLUT RGB);
glutInitWindowSize (FB _WIDTH, FB HEIGHT);
glutCreateWindow ("Test OpenGL Program');
init();
glutDisplayFunc(display);
glutMainLoop();

}

- blue are placeholders for windowing system commands
—can replace blue code with calls to glut

Math Review
<whiteboard>

