CS130 Exam 1 Material Outline

February 7, 2013

All homework problems
Labs
Lab 1: OpenGL basics
Lab 2 : DDA
Lab 3 : Transformations
- matrix stack
Lab 4 : Programmable shaders
Assignment 1: Mini Pipeline
- Barycentric coordinates
- Barycentric interpolation
- Rasterization
- z-buffer
- camera, projection, and viewport transformations

Lecture 1

- Areas of graphics: modeling, rendering, animation, simulation
- Global vs. Local Illumination
- General concepts:
- antialiasing
- flat vs. smooth shading
- texture mapping
- shadows
- motion blur and accumulation buffer
- OpenGL state machine
- OpenGL command syntax
- gl, glu, glut
- Math review
- points vs. vectors
- dot product
- cross product
- linear vs. affine

Lecture 2

- Raster Devices and Images
- Transmissive vs. Emissive Display
- Images
- Monitor Gamma and gamma correction
- Additive vs. Subtractive color
- alpha channel
- Graphics pipeline
- z-buffering
- valid polygons
- pipelining
- Graphics pipeline and major steps
(vertex proc, clipper and primitive assembler, rasterizer, fragment processor)
Lecture 3
- object vs. image oriented rendering
- Rasterizer transforms primitives to fragments, interpolates attributes, and enumerates pixels
- eqtn of lines, parametric eqtns
- implicit line eqtn, decision variable d
- midpoint algorithm
- Barycentric Coordinates

Lecture 4

- Triangle rasterization issues and shared edge conflicts
- Barycentric
- Transforms:
- -modelview
- transform, project, clip in geometric pipeline before rasterizers
- Orthographic projection
- Perspective viewing
- Clipping against view volume and planes (use intersection of line w/plane, then make new triangles)

Lecture 5

- occlusion
- painter's algorithm
- z-buffer
- backface culling (just one picture)
- Transformation Matrices
- Scaling (uniform/nonuniform), rotation, reflection, shear, translation
- ops are noncommutative

Lecture 6

- Viewing transformations (world to image space)
- CVV is always $-1,1$
- Viewport transform
- Orthographic transform
- Camera Transform (Orthogonal Case)
-(eye position, gaze direction, up vector)
- w, u, v formula
-Perspective viewing
-rigid
-affine
-perspective
-Projective transformations
-clipping after perspective transformation problematic

Lecture 7

-Shading
-General rendering
-surfaces either emit or reflect light
-Rendering equation
-local shading vs. global shading
-Global effects (translucency, multiple reflection, shadows)
-Specular, diffuse, ambient light
-Generalized light source
-Idealized light sources (ambient, point, spotlight, directional/dist light)
-Lambertian reflection model (reflectance, illumination, cosine proportionality)
-Ambient reflection
-Phong reflection model

Lecture 8

- Flat, Smooth (Gourard) and Phong shading
- Mach band effect (makes flat shading look even worse)
- Smooth shading (once per vertex)
- Interpolating normals (must renormalize)
- Using barycentric coordinates for interpolation / Goureaud shading
- Phong shading (once per fragment)
- 3 way comparison
- Problems with interpolated shading
- Programmable shading
- Plane Normals
- Implicit function normals
- Parametric form

