Viewing Transformations
Viewing transformations

• Move objects from their 3D locations to their positions in a 2D view

The viewing transformation also projects any point along the pixel’s view ray back to the pixel’s position in image space
Decomposition of viewing transforms

Viewing transforms depend on: camera position and orientation, type of projection, field of view, image resolution

there are several names for these spaces: “camera space” = “eye space”, “canonical view volume” = “clip space”= “normalized device coordinates”, “screen space= pixel coordinates” and for the transforms: “camera transformation” = “viewing transformation”
Viewport transform

\[(x, y, z) \rightarrow (x', y', z')\]

\[(x, y, z) \in [-1, 1]^3 \quad x' \in [-0.5, n_x - 0.5] \quad y' \in [-0.5, n_y - 0.5]\]
Viewport transform

- Camera transform
- Projection transform
- Viewport transform

M_{vp}

<whiteboard>
Orthographic Projection Transform

Camera transform \rightarrow Projection transform \rightarrow Viewport transform

\begin{align*}
(r, t, h) & \quad (l, b, f) \\
M_{orth} & \quad (-1, -1, -1) \\
& \quad (1, 1, 1)
\end{align*}

<whiteboard>
Line drawing algorithm

construct \(M_{vp} \)
construct \(M_{orth} \)
\(M = M_{vp}M_{orth} \)
for each line segment \((a_i, b_i)\) do
\[
p = M a_i
\]
\[
q = M b_i
\]
drawline \((x_p, y_p, x_q, y_q)\)

Shirley, Marschner 7.1
Camera Transform
Camera Transform

How do we specify the camera configuration?

(orthogonal case)
Camera Transform

How do we specify the camera configuration?

eye position
Camera Transform

How do we specify the camera configuration?

`gaze` direction
Camera Transform

How do we specify the camera configuration?

up vector
Camera Transform

How do we specify the camera configuration?
Camera Transform

\[w = -\frac{g}{|g|} \]
\[u = \frac{t \times w}{|t \times w|} \]
\[v = w \times u \]

\[M_{cam} \]
Line drawing algorithm

\[
\text{construct } M_{vp} M_{cam} \\
\text{construct } M_{orth} \\
M = M_{vp} M_{orth} M_{cam} \\
\text{for each line segment } (a_i, b_i) \text{ do} \\
\quad p = Ma_i \\
\quad q = Mb_i \\
\text{drawline } (x_p, y_p, x_q, y_q)
\]

Shirley, Marschner 7.1