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Blending functions are more convenient
basis than monomial basis
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® monomial basis

f(U) — 4 s NIV a2u2 a3 U

® blending functions

f(u) = bo(u)po + b1(u)p1 + b2(u)p2 + b3(u)p3

- geometric form is more intuitive because it combines control points with blending functions



Stitching curve segments together: continuity

parametric
continuity

geometric
continuity

Top

CO: the curves are continuous, but have discontinuous first derivatives
Bottom

Left: At the knot, the curve has C1 continuity: the curve segments have common point and
first derivative

Right: At the knot, the curve has G1 continuity: the curve segments have a common point,
and parallel first derivatives of different magnitude



Cubics

f(U) — ap + aju + a2u2 -+ a3u3

® Allow up to (02 continuity at knots

® Symmetry: specify position and derivative at the beginning
and end

® good smoothness and computational properties

need 4 control points: might be 4 points on the curve, combination of points and
derivatives, ...



Cubic Hermite Curves




Cubic Hermite Curves

construct
curve with
C! continuity

Specify endpoints
and derivatives
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Hermite blending functions
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Example: keynote curve tool




Control points
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Interpolating
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Cubic Bezier Curves




Bezier Curve Examples
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Bezier blending functions
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Bernstein Polynomials

*The blending functions are a special case

of the Bernstein polynomials
d' k d—k
u) = -
bia (1) l_c!(d—_k)!u (1-u)
*These polynomials give the blending

polynomials for any degree Bezier form
-All roots at 0 and 1

-For any degree they all sum to 1

-They are all between 0 and 1 inside (0,1)
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Bezier Curve Properties

curve lies in the convex hull of
the data

variation diminishing

symmetry

affine invariant

efficient evaluation and
subdivision




Bezier subdivision
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Surfaces




Parametric Surface
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Parametric Surface -
tangent plane




Bicubic Surface Patch




Bezier Surface Patch

=2 2 blwbi Py

Patch lies In
convex hull

Poo

Po3




