CS130 : Computer Graphics
Lecture 20: Ray Tracing

Tamar Shinar
Computer Science & Engineering
UC Riverside
Ray Tracing
shallow depth of field, area light sources, diffuse interreflection
up to 16 reflections per ray

Greg L., Wikimedia Commons
for each pixel

1. **cast view ray**: compute view ray from camera through pixel into scene
2. **intersect**: find intersection of ray with closest object
3. **shade**: compute the color of the intersection point
Ray Tracing Program

for each pixel do
 compute viewing ray
 if (ray hits an object with t in [0, inf]) then
 compute n
 evaluate shading model and set pixel to that color
 else
 set pixel color to the background color
Recursive ray tracing

\[\text{ray} = \text{ray}(e, d, t_0, t_{\text{max}}) \]

function \(\text{ray_color}(\text{ray}) \)

\[\text{if} \ (\text{Intersection}(\text{ray})) \ \text{then} \]
\[\quad \text{point} = \text{ray_Point}(\text{ray_t_max}) \]
\[\quad \text{color} \ c = \text{color_ambient} \]
\[\quad \text{if} \ (! \ \text{Intersection}(\text{ray(point, l, eps, inf)})) \]
\[\quad \quad \ h = \text{halfway_vector} \]
\[\quad \quad \ c = c + \text{color_diffuse} + \text{color_specular} \]
\[\quad \quad \ c = c + k_m \ * \ \text{ray_color}(\text{ray(point, r, eps, inf)}) \]
\[\text{else} \]
\[\quad \text{color} \ c = \text{background\ color} \]
class Surface
{
 public:
 void Intersection(RAY& ray)=0;
 Box Bounding_Box()=0;
 }

Other objects: Ray, Light, Material, Camera, Film, World