CSI30: Computer Graphics

Texture Mapping

Tamar Shinar
Computer Science & Engineering
UC Riverside
There are limits to geometric modeling

Although modern GPUs can render millions of triangles/sec, that’s not enough sometimes...

http://www.beinteriordecorator.com

National Geographic
Use texture mapping to increase realism through detail

This image is just 8 polygons!
No texture

With texture
Pixar - Toy Story
Store 2D images in buffers and lookup pixel reflectances

procedural

photo

$f(s, t)$
Store 2D images in buffers and lookup pixel reflectances.

Textures can be anything that you can lookup values in — photo, procedurally generated, or even a function that computes a value on the fly.
3D solid textures
Other uses of textures...

Light maps
Shadow maps
Environment maps
Bump maps
Opacity maps
Animation

[Angel and Shreiner]
[Stam 99]
Texture mapping in the OpenGL pipeline

- Geometry and pixels have separate paths through pipeline

- meet in **fragment processing** - where textures are applied

- texture mapping applied at end of pipeline - efficient since relatively few polygons get past clipper
uv Mapping

- 2D texture is parameterized by \((u, v)\)
- Assign polygon vertices texture coordinates
- Interpolate within polygon
Texture Calibration
The major issues in texture mapping...

• What should the actual mapping be?

easy: flat surface

harder: curved surface
Given a point on the object \((x,y,z)\), what point \((u,v)\) in the texture we use?
Example: planar mapping
Intermediate surfaces

First map the texture to a simpler, intermediate surface
Cylindrical mapping

\[(x, y, z) \rightarrow (\theta, h) \rightarrow (u, v)\]
Spherical Mapping

\[(x,y,z) \rightarrow (\text{latitude}, \text{longitude}) \rightarrow (u,v)\]
Box Mapping
How do we map between intermediate and actual objects?
How do we map between intermediate and actual objects?

[Diagram showing a teapot with annotations: position, surface normal, from centroid, reflection.]

What intermediate shape was used here?
Parametric Surfaces

32 parametric patches
3D solid textures

can map object \((x,y,z)\) directly to texture \((u,v,w)\)
Procedural textures

e.g., Perlin noise
Triangles
Texturing triangles

- Store \((u,v)\) at each vertex
- Interpolate inside triangles using barycentric coordinates
Texturing triangles

- Store \((u,v)\) at each vertex
- Interpolate inside triangles using barycentric coordinates

\[
p(\beta, \gamma) = a + \beta(b - a) + \gamma(c - a),
\]

\[
u(\beta, \gamma) = u_a + \beta(u_b - u_a) + \gamma(u_c - u_a),
\]

\[
v(\beta, \gamma) = v_a + \beta(v_b - v_a) + \gamma(v_c - v_a).
\]
Texturing triangles

Choice of \((u,v)\) makes big difference
Texturing triangles

Choice of (u,v) makes big difference

texture extended through “tiling”
Texturing triangles

Choice of \((u,v)\) makes big difference
Textures in OpenGL

- Assign (u,v) to vertices
- OpenGL then uses interpolation for triangle interior

\texttt{glTexCoord*()}

- good selection of tex coordinates
- poor selection of tex coordinates
- texture stretched over trapezoid showing effects of bilinear interpolation
Multitexturing
Texture Sampling
Texture Mapping

texture coordinates → object coordinates → window coordinates

Texels → Pixels

[Angel and Shreiner]
Point Sampling

Map back to texture image and use the nearest texel

[Angel and Shreiner]
Aliasing

Point sampling of the texture can lead to aliasing artifacts.

miss blue stripes

point samples in (or x,y,z) space

point samples in texture space

[Angel and Shreiner]
Magnification and Minification

texels applied to 3D polygon

grid of pixels on screen

Minification

Magnification
Magnification and Minification

More than one texel can cover a pixel (minification) or more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering (2 x 2 filter) to obtain texture values
Aliasing artifacts

We apply filtering to reduce aliasing artifacts
Area Averaging

A better but slower option is to use area averaging

[Angel and Shreiner]
Use bilinear filtering

\[p = ? \]

- nearest neighbor
- bilinear
- bicubic

mitigate magnification artifacts
Mipmapping

Reduce minification artifacts
Prefilter the texture to obtain reduced resolutions
Requires 1/3 more space
Get a texture hierarchy indexed by level

128×128, 64×64, 32×32, 16×16, 8×8, 4×4, 2×2, 1×1
point sampling

mipmapped point sampling

linear filtering

mipmapped linear filtering

[Angel and Shreiner]