Rendering approaches

1. **object-oriented**
 foreach object ...

2. **image-oriented**
 foreach pixel ...

- vertices → 3D rendering pipeline → image
Outline

- **clipping** - clip objects to viewing volume
- **rasterization** - make fragments from clipped objects
- **hidden surface removal** - determine visible fragments
What is rasterization?

Rasterization is the process of determining which pixels are “covered” by the primitive.
What is rasterization?

Input: primitives

Output: fragments

enumerate the pixels covered by a primitive

interpolate attributes across the primitive
Rasterization

Compute integer coordinates for pixels covered by the 2D primitives

Algorithms are invoked many, many times and so must be efficient

Output should be visually pleasing, for example, lines should have constant density

Obviously, they should be able to draw all possible 2D primitives
Screen coordinates

\[[-0.5, n_x - 0.5] \times [-0.5, n_y - 0.5] \]

\(n_x \) = number of columns

\(n_y \) = number of rows
Line Representation
Math Review

• 2D math for lines

How do we determine the equation of the line?
Math Review

- Explicit (functional) representation

 \[y = f(x) \]

 \(y \) is the dependent, \(x \) independent variable

 Find value of \(y \) from value of \(x \)

 Example, for a line:

 \[y = mx + b \]
Math Review

- 2D math for lines

Slope-Intercept formula for a line

Slope = \(\frac{Y_2 - Y_1}{X_2 - X_1} \)

\[\Rightarrow \frac{Y - Y_1}{X - X_1} \]

Solving For Y

\[Y = \left[\frac{Y_2 - Y_1}{X_2 - X_1} \right]X \]
\[+ \left[-\frac{Y_2 - Y_1}{X_2 - X_1} \right]X_1 + Y_1 \]

or

\[Y = mX + b \]
Math Review

• Parametric Representation

\[x = x(u), \quad y = y(u) \]

where new parameter \(u \) (or often \(t \)) determines the value of \(x \) and \(y \) (and possibly \(z \)) for each point

\(x, y \) treated the same, axis invariant
Parametric formula for a line

\[X = X_1 + t(X_2 - X_1) \]
\[Y = Y_1 + t(Y_2 - Y_1) \]

for parameter \(t \) from 0 to 1

Therefore, when
\[t = 0 \] we get \((X_1, Y_1)\)
\[t = 1 \] we get \((X_2, Y_2)\)

Varying \(t \) gives the points along the line segment
Implicit Line Equation

\[f(X) = N \cdot (X - X_0) = 0 \]

\[X_0 = (x_0, y_0) \]
Implicit Line Equation

\[f(X) = N \cdot (X - X_0) = d \]

Decision variable, \(d \)

\[\begin{align*}
 &d > 0 \\
 &d < 0 \\
 &d = 0
\end{align*} \]

\(X_0 = (x_0, y_0) \)
Implicit Line Equation

\[f(X) = N \cdot (X - X_0) = d \]

decision variable, \(d \)

\begin{align*}
 d &> 0 \\
 d &< 0 \\
 d &= 0
\end{align*}

\(X_0 = (x_0, y_0) \)
Implicit Line Equation

Decision variable, \(d \)

\[
f(X) = N \cdot (X - X_0) = d
\]

- \(d > 0 \)
- \(d < 0 \)
- \(d = 0 \)

\(X_0 = (x_0, y_0) \)
Implicit Line Equation

\[f(\mathbf{X}) = \mathbf{N} \cdot (\mathbf{X} - \mathbf{X}_0) = d \]

- \(d > 0 \)
- \(d < 0 \)
- \(d = 0 \)

Decision variable, \(d \)

\(\mathbf{X}_0 = (x_0, y_0) \)
Line Drawing
DDA algorithm for lines

Parametric Lines: the DDA algorithm
(digital differential analyzer)

\[Y_{i+1} = m \cdot x_{i+1} + B \]

\[= m(x_i + \Delta x) + B \quad \Delta x = (x_{i+1} - x_i) \]

\[= y_i + m(\Delta x) \quad \text{<- must round to find int} \]

If we increment by 1 pixel in X, we turn on
[\(x_i, \text{Round}(y_i)\)] or same for Y if \(m > 1\)
Scan conversion for lines

DDA includes Round(); and this is fairly slow

For Fast Lines, we want to do only integer math +,-

We do this using the **Midpoint Algorithm**

To do this, let's look at lines with y-intercept B and with slope between 0 and 1:

\[y = \left(\frac{dy}{dx}\right)x + B \quad \Rightarrow \quad f(x,y) = (dy)x - (dx)y + B(dx) = 0 \]

Removes the division => slope treated as 2 integers
Which pixels should be used to approximate a line?

Draw the thinnest possible line that has no gaps.
Line drawing algorithm

(case: $0 < m \leq 1$)

\begin{align*}
y &= y_0 \\
\text{for } x = x_0 \text{ to } x_1 \text{ do} \\
&\quad \text{draw}(x,y) \\
&\quad \text{if } (<\text{condition}> \text{) then} \\
&\quad \quad y = y + 1
\end{align*}

• move from left to right
• choose between $(x+1,y)$ and $(x+1,y+1)$
Line drawing algorithm

(case: $0 < m \leq 1$)

\[
y = y_0 \\
\text{for } x = x_0 \text{ to } x_1 \text{ do} \\
\text{draw}(x,y) \\
\text{if } (<\text{condition}>\text{)} \text{ then} \\
y = y + 1
\]

• move from left to right
• choose between $(x+1,y)$ and $(x+1,y+1)$
Use the midpoint between the two pixels to choose
Use the midpoint between the two pixels to choose
Use the midpoint between the two pixels to choose
Use the midpoint between the two pixels to choose

Implicit line equation:

\[f(X) = N \cdot (X - X_0) = 0 \]

Evaluate \(f \) at midpoint:

\[f(x, y + \frac{1}{2}) \neq 0 \]
Use the midpoint between the two pixels to choose

implicit line equation:

\[f(X) = N \cdot (X - X_0) = 0 \]

evaluate \(f \) at midpoint:

\[f(x, y + \frac{1}{2}) > 0 \]
Line drawing algorithm

(case: $0 < m \leq 1$)

\[
y = y_0
\text{for } x = x_0 \text{ to } x_1 \text{ do}
\quad \text{draw}(x,y)
\quad \text{if } \left(f(x + 1, y + \frac{1}{2}) < 0 \right) \text{ then}
\quad y = y + 1
\]
We can make the Midpoint Algorithm more efficient

\[y = y_0 \]
\[\text{for } x = x_0 \text{ to } x_1 \text{ do} \]
\[\quad \text{draw}(x, y) \]
\[\quad \text{if } \left(f(x + 1, y + \frac{1}{2}) < 0 \right) \text{ then} \]
\[\quad y = y + 1 \]
We can make the Midpoint Algorithm more efficient by making it incremental!

\[f(x, y) = (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0 = 0 \]

\[f(x + 1, y) = f(x, y) + (y_0 - y_1) \]

\[f(x + 1, y + 1) = f(x, y) + (y_0 - y_1) + (x_1 - x_0) \]
We can make the Midpoint Algorithm more efficient

\[f(x + 1, y + \frac{1}{2}) > 0 \]

\[f(x, y) = (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0 = 0 \]

\[f(x + 1, y) = f(x, y) + (y_0 - y_1) \]

\[f(x + 1, y + 1) = f(x, y) + (y_0 - y_1) + (x_1 - x_0) \]
We can make the Midpoint Algorithm more efficient

\[f(x + 1, y + \frac{1}{2}) < 0 \]

\[f(x, y) = (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0 = 0 \]

\[f(x + 1, y) = f(x, y) + (y_0 - y_1) \]

\[f(x + 1, y + 1) = f(x, y) + (y_0 - y_1) + (x_1 - x_0) \]
We can make the Midpoint Algorithm more efficient

\begin{align*}
y &= y_0 \\
d &= f(x_0+1, y_0+1/2) \\
\text{for } x = x_0 \text{ to } x_1 \text{ do} \\
&\quad \text{draw}(x, y) \\
&\quad \text{if } (d<0) \text{ then} \\
&\quad&\quad y &= y+1 \\
&\quad&\quad d &= d+(y_0-y_1)+(x_1-x_0) \\
&\quad\text{else} \\
&\quad&\quad d &= d+(y_0-y_1)
\end{align*}

\begin{align*}
f(x+1, y) &= f(x, y) + (y_0 - y_1) \\
f(x+1, y+1) &= f(x, y) + (y_0 - y_1) + (x_1 - x_0)
\end{align*}
Adapt Midpoint Algorithm for other cases

case: 0 < m <= 1
Adapt Midpoint Algorithm for other cases

case: \(-1 \leq m < 0\)
Adapt Midpoint Algorithm for other cases

case: $l \leq m$
or $m \leq -l$
Line drawing references

- the algorithm we just described is the *Midpoint Algorithm* (Pitteway, 1967), (van Aken and Novak, 1985)
- draws the same lines as the *Bresenham Line Algorithm* (Bresenham, 1965)