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What is a curve?

intuitive idea:
draw with a pen
set of points the pen traces

may be 2D, like on paper
or 3D, space curve



What is a curve?

or be
closed

may have
endpoints

extend
infinitely



How do we specify a curve!
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How do we specify a curve!

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

Parametric
(2D) (xy) = (1)
(3D) (xy,z) = ()
map free parameter t
to points on the curve

Procedural
e.qg., fractals,
subdivision schemes Fractal: Koch Curve

|George Reese]



How do we specify a curve!

Implicit
(2D) f(x,y) =0
test if (x,y) is on the curve

Parametric
(2D) (xy) = (1) ’
(3D) (xy,z) = ()
map free parameter t
to points on the curve

Procedural
e.qg., fractals,
subdivision schemes Bezier Curve



A curve may have multiple
representations



A curve may have multiple
representations

Implicit
f(x,y) =x2+vy2-1=0



A curve may have multiple
representations

t = pif2

Parametric
(x,y) = f(t) = (cos t, sin t)



A curve may have multiple

representations
t = pi/2
Parametric
(x,y) = f(t) = (cos t, sin t),
tin [0,2pi)

Same curve (set of points),
but different mathematical representation!



A curve may have multiple

representations
t = pi/2
Parametric
(x,y) = f(t) = (cos t, sin t),
tin [0,2pi)

We will focus on parametric representations



Parameterization, re-parameterization
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Parameterization, re-parameterization

fa(s)

trace out
the curve
more quickly

s =0.5
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Parameterization, re-parameterization
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Natural parameterization

note: points

uneven ?/’\.

t=10




Natural parameterization

pen moves at a constant velocity:

evenly spaced points /‘/\.
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Natural parameterization

pen moves at a constant velocity:

evenly spaced points /"\.

s=0

f(s)

also called
arc-length
parameterization
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Natural parameterization

pen moves at a constant velocity:

evenly spaced points /"\.

+ s =10
s=0
£(s)
also called 5
arc-length df (s) .
parameterization ds




piecewise parametric representation

sometimes easy
to find a parametric
representation

e.qg., circle, line segment

\



piecewise parametric representation

IN other cases, not obvious



piecewise parametric representation

strategy: break into simpler pieces
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piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

£ (2u) u < 0.5 map the inputs to

fH(2u—1) uw>0.5 fi and fo
to be from 0 to 1

f(u) =<




Curve Properties

Local properties:
continuity
position
direction
curvature

Global properties (examples):
closed curve
curve crosses itself

Interpolating vs. non-interpolating



Continuity: stitching curve segments together

parametric
continuity

geometric
continuity



Finding a Parametric
Representation



Polynomial Pieces

<whiteboard>



