CS130 : Computer Graphics
Curves

Tamar Shinar
Computer Science & Engineering
UC Riverside
Design considerations

- local control of shape
- design each segment independently
- smoothness and continuity
- ability to evaluate derivatives
- stability
 - small change in input leads to small change in output
- ease of rendering

- local control – design each segment independently
- stability – small change in input values leads to small change in output
Design considerations

- local control of shape
- design each segment independently
- smoothness and continuity
- ability to evaluate derivatives
- stability
 - small change in input leads to small change in output
- ease of rendering

approximate out of a number of wood strips
Design considerations

- local control of shape
- design each segment independently
- smoothness and continuity
- ability to evaluate derivatives
- stability
 - small change in input leads to small change in output
- ease of rendering

- local control – design each segment independently
- stability – small change in input values leads to small change in output

approximate out of a number of wood strips

join points or knots
What is a curve?

intuitive idea:
 draw with a pen
 set of points the pen traces

may be 2D, like on paper
or 3D, space curve
What is a curve?
What is a curve?

may have endpoints
What is a curve?

May have endpoints.

Extend infinitely.
What is a curve?

- May have endpoints
- Or be closed
- Extend infinitely
How do we specify a curve?
How do we specify a curve?

Implicit

(2D) $f(x,y) = 0$

test if (x,y) is on the curve
How do we specify a curve?

Implicit

(2D) \(f(x,y) = 0 \)
test if \((x,y)\) is on the curve

\(f(x,y) = 0 \)
on curve
How do we specify a curve?

Implicit

(2D) $f(x,y) = 0$

test if (x,y) is on the curve

$$f(x,y) \neq 0$$

off curve
How do we specify a curve?

Implicit
(2D) \(f(x,y) = 0 \)
test if \((x,y)\) is on the curve

Parametric
(2D) \((x,y) = f(t)\)
(3D) \((x,y,z) = f(t)\)
map free *parameter* \(t\)
to points on the curve
How do we specify a curve?

Implicit
(2D) \(f(x,y) = 0 \)
test if \((x,y)\) is on the curve

Parametric
(2D) \((x,y) = f(t)\)
(3D) \((x,y,z) = f(t)\)
map free *parameter* \(t\)
to points on the curve
How do we specify a curve?

Implicit

(2D) \(f(x,y) = 0 \)
test if \((x,y)\) is on the curve

Parametric

(2D) \((x,y) = f(t)\)
(3D) \((x,y,z) = f(t)\)
map free \textit{parameter} \(t\)
to points on the curve

Procedural

e.g., fractals,
subdivision schemes

Fractal: Koch Curve
How do we specify a curve?

Implicit

(2D) \(f(x,y) = 0 \)

test if \((x,y)\) is on the curve

Parametric

(2D) \((x,y) = f(t)\)

(3D) \((x,y,z) = f(t)\)

map free parameter \(t\)
to points on the curve

Procedural

e.g., fractals,
subdivision schemes

Fractal: Koch Curve
How do we specify a curve?

Implicit
(2D) \(f(x,y) = 0 \)
test if \((x,y)\) is on the curve

Parametric
(2D) \((x,y) = f(t)\)
(3D) \((x,y,z) = f(t)\)
map free parameter \(t\)
to points on the curve

Procedural
e.g., fractals, subdivision schemes

http://codegolf.stackexchange.com/questions/21178/animated-drawing-of-a-b%C3%A9zier-curve
How do we specify a curve?

Implicit
(2D) \(f(x,y) = 0 \)
test if \((x,y)\) is on the curve

Parametric
(2D) \((x,y) = f(t)\)
(3D) \((x,y,z) = f(t)\)
map free parameter \(t\)
to points on the curve

Procedural
e.g., fractals,
subdivision schemes

Beziers Curve

http://codegolf.stackexchange.com/questions/21178/animated-drawing-of-a-bezier-curve
A curve may have multiple representations
A curve may have multiple representations

Implicit

\[f(x, y) = x^2 + y^2 - 1 = 0 \]
A curve may have multiple representations

Parametric
\[(x,y) = f(t) = (\cos t, \sin t)\]

\[t = 0\]
\[t = \pi/2\]
A curve may have multiple representations

Parametric

\[(x, y) = f(t) = (\cos t, \sin t), \quad t \in [0, 2\pi)\]

Same curve (set of points), but different mathematical representation!
A curve may have multiple representations

We will focus on parametric representations

\[(x, y) = f(t) = (\cos t, \sin t), \]
\[t \text{ in } [0, 2\pi) \]
Parameterization, re-parameterization

\[f_1(t) \]

- \(t = 0 \)
- \(t = 5 \)
- \(t = 10 \)
Parameterization, re-parameterization

$s = 0$

$f_2(s)$ trace out the curve more quickly

$s = 0.5$

$s = 1$
Parameterization, re-parameterization

relationship:
\[t = 10s \]
\[f_1(t) = f_1(10s) \]
\[= f_1(f(s)) \]
\[= f_2(s) \]
Parameterization, re-parameterization

\[f_2(s) = f_1(f(s)) \]
Parameterization, re-parameterization

\[t = 0 \quad \text{to} \quad t = 10 \]

\[s = s_0 \quad \text{to} \quad s = s_1 \]

\[t = f(s) \]

\[f_2(s) = f_1(f(s)) \]
Natural parameterization

note: points uneven

t = 0

t = 5

t = 10
Natural parameterization

pen moves at a constant velocity:
evenly spaced points

\[f(s) \]

\[s = 0 \]

\[s = 5 \]

\[s = 10 \]
Natural parameterization

pen moves at a constant velocity: evenly spaced points

\[f(s) \]

- \(s = 0 \)
- \(s = 5 \)
- \(s = 10 \)
Natural parameterization

pen moves at a constant velocity:
evenly spaced points

\[f(s) \]

also called
\textit{arc-length}
parameterization

\[s = 0 \]

\[s = 5 \]

\[s = 10 \]
Natural parameterization

pen moves at a constant velocity:
evenly spaced points

$s = 0$

$f(s)$

also called
arc-length parameterization

$s = 5$

$s = 10$

$\left| \frac{df(s)}{ds} \right|^2 = c$
piecewise parametric representation

sometimes easy
to find a parametric representation

e.g., circle, line segment
piecewise parametric representation

in other cases, not obvious
piecewise parametric representation

strategy: break into simpler pieces
piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

\[f(u) = \begin{cases}
 f_1(2u) & u \leq 0.5 \\
 f_2(2u - 1) & u > 0.5
\end{cases} \]
piecewise parametric representation

strategy: break into simpler pieces

switch between functions that represent pieces:

\[f(u) = \begin{cases}
 f_1(2u) & u \leq 0.5 \\
 f_2(2u - 1) & u > 0.5
\end{cases} \]

map the inputs to \(f_1 \) and \(f_2 \) to be from 0 to 1
Curve Properties

Local properties:
 continuity
 position
 direction
 curvature

Global properties (examples):
 closed curve
 curve crosses itself

Interpolating vs. non-interpolating
Continuity: stitching curve segments together

Top
C0: the curves are continuous, but have discontinuous first derivatives

Bottom
Left: At the knot, the curve has C1 continuity: the curve segments have common point and first derivative
Right: At the knot, the curve has G1 continuity: the curve segments have a common point, and parallel first derivatives of different magnitude
Finding a Parametric Representation
Polynomial Pieces
Interpolating polynomials

• Given \(n+1 \) data points, can find a unique interpolating polynomial of degree \(n \)

• Different methods:
 • Vandermonde matrix
 • Lagrange interpolation
 • Newton interpolation
higher order interpolating polynomials are rarely used

These images demonstrate problems with using higher order polynomials:
- overshoots
- non-local effects (in going from the 4th order polynomial in grey to the 5th order polynomial in black)