Lecture 3 Notes - Math Review

1. Points — locations \(P, Q, R \)

2. Vectors — direction & magnitude \(\mathbf{u}, \mathbf{v}, \mathbf{w} \)
 - no notion of location
 - all relative
 - vector addition
 - scalar multiplication

 \(\alpha, \beta, \gamma \)

3. Vector space
 - coordinate system — basis vectors:
 \[\mathbf{a} = (a_1, a_2, a_3) = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \]

4. Lines
 \[P(\alpha) = P + \alpha \mathbf{v} \]

 Line segments
 \[(1-\alpha)P + \alpha Q \]
 \[0 \leq \alpha \leq 1 \]

 equivalent:
 \[P + \alpha (Q - P) \]
5. Dot Product

\[
\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3
\]

\[
\mathbf{a} \cdot \mathbf{a} = \mathbf{a}^\top \mathbf{a}
\]

\[
\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2 = ||\mathbf{a}||^2
\]

\[
\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \, ||\mathbf{b}|| \cos \theta
\]

Geometric Interpretation:

\[
(\mathbf{a} \text{ unit vector})
\]

\[
\mathbf{b}
\]

\[
\mathbf{a}
\]

\[
Q
\]

\[
\mathbf{a} \cdot \mathbf{b} = ?
\]

\[
\mathbf{a} \cdot \mathbf{b} > 0
\]

\[
\mathbf{a} \cdot \mathbf{b} < 0
\]

Region of Negative Dot Product

\[
Q
\]
Cross Product

\[\sim \times \sim = \begin{vmatrix} \hat{k} & \hat{j} & \hat{i} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2 b_3 - a_3 b_2) \hat{i} + (a_3 b_1 - a_1 b_3) \hat{j} + (a_1 b_2 - a_2 b_1) \hat{k} \]

\text{result of cross product is another vector!}

Right-hand rule:

\[\| \sim \times \sim \| = \| \sim \| \| \sim \| \sin \theta \]

\[\vec{a} \times \vec{b} \]

\[\angle \text{magnitude of the resulting vector} \]

\[\text{direction is given by right-hand rule.} \]

Question:

\[\sim \times \sim = ? \]

\[\sim \times \sim = 0 \]

\[\sin \theta \]
matrices

\[A = \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix} \]

\[a_{ij} \]

2 rows \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23}
\end{pmatrix}

3 columns

2x3 matrix

matrix multiplication

\[A \times B \]

\[m \times n \]

\[\text{you can't just multiply any two matrices} \]
\[\text{they have to be compatible} \]

\[y = A \times x \]

\[\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\]

\[= \begin{pmatrix}
 a_{11} \\
 a_{21} \\
 a_{31}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
+ \begin{pmatrix}
 a_{12} \\
 a_{22} \\
 a_{32}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
+ \begin{pmatrix}
 a_{13} \\
 a_{23} \\
 a_{33}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} \]
\[f_1(x) = Ax \]
\[f_2(x) = Bx \]

\[f(x) = f_1(f_2(x)) = A(f_2(x)) = (A B)x \]

\[f(x) = (A B) x \]

\[f(x) = Cx \]

\[f_1 \circ f_2 \]

transpose of a matrix

\[a_{ji} \leftarrow a_{ij} \]