
iSAX: Indexing and Mining Terabyte Sized Time Series

Jin Shieh
Dept. of Computer Science & Engineering

University of California, Riverside, CA, USA
shiehj@cs.ucr.edu

Eamonn Keogh
Dept. of Computer Science & Engineering

University of California, Riverside, CA, USA
eamonn@cs.ucr.edu

ABSTRACT
Current research in indexing and mining time series data has
produced many interesting algorithms and representations.
However, the algorithms and the size of data considered have
generally not been representative of the increasingly massive
datasets encountered in science, engineering, and business
domains. In this work, we show how a novel multi-resolution
symbolic representation can be used to index datasets which are
several orders of magnitude larger than anything else considered
in the literature. Our approach allows both fast exact search and
ultra fast approximate search. We show how to exploit the
combination of both types of search as sub-routines in data
mining algorithms, allowing for the exact mining of truly massive
real world datasets, containing millions of time series.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining
General Terms
Algorithms, Experimentation

Keywords
Time Series, Data Mining, Representations, Indexing

1. INTRODUCTION
The increasing level of interest in indexing and mining time series
data has produced many algorithms and representations.
However, with few exceptions, the size of datasets considered,
indexed, and mined seems to have stalled at the megabyte level.
At the same time, improvements in our ability to capture and store
data have lead to the proliferation of terabyte-plus time series
datasets. In this work, we show how a novel multi-resolution
symbolic representation called indexable Symbolic Aggregate
approXimation (iSAX) can be used to index datasets which are
orders of magnitude larger than anything else considered in
current literature.
The iSAX approach allows for both fast exact search and ultra
fast approximate search. Beyond mere similarity search, we show
how to exploit the combination of both types of search as sub-
routines in data mining algorithms, permitting the exact mining of
truly massive datasets, with millions of time series, occupying up
to a terabyte of disk space.

Our approach is based on a modification of the SAX
representation to allow extensible hashing [12]. In essence, we
show how we can modify SAX to be a multi-resolution
representation, similar in spirit to wavelets. It is this multi-
resolution property that allows us to index time series with zero
overlap at leaf nodes as in TS-tree [2], unlike R-trees and other
spatial access methods.
As we shall show, our indexing technique is fast and scalable due
to intrinsic properties of the iSAX representation. Because of this,
we do not require the use of specialized databases or file
managers. Our results, conducted on massive datasets, are all
achieved using a simple tree structure which simply uses the
standard Windows XP NTFS file system for disk access. While it
might have been possible to achieve faster times with a
sophisticated DBMS, we feel that the simplicity of this approach
is a great strength, and will allow easy adoption, replication, and
extension of our work.
A further advantage of our representation is that, being symbolic,
it allows the use of data structures and algorithms that are not well
defined for real-valued data, including suffix trees, hashing,
Markov models etc [12]. Furthermore, given that iSAX is a
superset of classic SAX, the several dozen research groups that
use SAX will be able to adopt iSAX to improve scalability [11].
The rest of the paper is organized as follows. In Section 2 we
review related work and background material. Section 3
introduces the iSAX representation, and Section 4 shows how it
can be used for approximate and exact indexing. In Section 5 we
perform a comprehensive set of experiments on both indexing and
data mining problems. Finally, in Section 6 we offer conclusions
and suggest directions for future work.

2. BACKGROUND AND RELATED WORK
2.1 Time Series Distance Measures
It is increasingly understood that Dynamic Time Warping (DTW)
is better than Euclidean Distance (ED) for most data mining tasks
in most domains [16]. It is therefore natural to ask why we are
planning to consider Euclidean distance in this work. The well
documented superiority of DTW over ED is due to the fact that in
small datasets it might be necessary to warp a little to match the
nearest neighbor. However, in larger datasets one is more likely
to find a close match without the need to warp. As DTW warps
less and less, it degenerates to simple ED. This was first noted in
[14] and later confirmed in [16] and elsewhere. For completeness,
we will show a demonstration of this effect. We measured the
classification accuracy of both DTW and ED on increasingly
large datasets containing the CBF and Two-Pat problems, two
classic time series benchmarks. Both datasets allow features to
warp up to 1/8 the length of the sequence, so they may be
regarded as highly warped datasets. Figure 1 shows the result.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08...$5.00.

623

Figure 1: The error rate of DTW and ED on increasingly large
instantiations of the CBF and Two-Pat problems. For even
moderately large datasets, there is no difference in accuracy

As we can see, for small datasets, DTW is significantly more
accurate than ED. However, as the datasets get larger, the
difference diminishes, and by the time there are mere thousands
of objects, there is no measurable difference. In spite of this, and
for completeness, we explain in an offline Appendix [10] that we
can index under DTW with iSAX with only trivial modifications.

2.2 Time Series Representations
There is a plethora of time series representations proposed to
support similarity search and data mining. Table 1 show the major
techniques arranged in a hierarchy.

Table 1: A Hierarchy of Time Series Representations

• Model Based
o Markov Models
o Statistical Models
o Time Series Bitmaps

• Data Adaptive
o Piecewise Polynomials

 Interpolation*
 Regression

o Adaptive Piecewise Constant Approximation*
o Singular Value Decomposition*
o Symbolic

 Natural Language
 Strings

• Non-Lower Bounding [1][7][13]
• SAX* [12], iSAX*

o Trees
• Non-Data Adaptive

o Wavelets*
o Random Mappings
o Spectral

 DFT* [6]
 DCT*
 Chebyshev Polynomials* [4]

o Piecewise Aggregate Approximation* [9]
• Data Dictated

o Clipped Data*
Those representations annotated with an asterisk have the very
desirable property of allowing lower bounding. That is to say, we
can define a distance measurement on the reduced abstraction that
is guaranteed to be less than or equal to the true distance
measured on the raw data. It is this lower bounding property that
allows us to use a representation to index the data with a
guarantee of no false dismissals [6]. The list of such
representations includes (in approximate order of introduction)
the discrete Fourier transform (DFT) [6], the discrete Cosine
transform (DCT), the discrete Wavelet transform (DWT),
Piecewise Aggregate Approximation (PAA) [8], Adaptive
Piecewise Constant Approximation (APCA), Chebyshev
Polynomials (CHEB) [4] and Indexable Piecewise Linear
Approximation (IPLA). We will provide the first empirical
comparison of all these techniques in Section 5.
The only lower bounding omissions from our experiments are the
eigenvalue analysis techniques such as SVD and PCA. While
such techniques give optimal linear dimensionality reduction, we
believe they are untenable for massive datasets. For example,

while [15] notes that they can transform 70,000 time series in
under 10 minutes, this assumes the data can fit in main memory.
However, to transform all the out-of-core (disk resident) datasets
we consider in this work, SVD would require several months.
There have been several dozen research efforts that propose to
facilitate time series search by first symbolizing the raw data
[1][7][13]. However, in every case, the authors introduced a
distance measure defined on the newly derived symbols. This
allows false dismissals with respect to the original data. In
contrast, the proposed work uses the symbolic words to internally
organize and index the data, but retrieves objects with respect to
the Euclidean distance on the original raw data.

2.3 Review of Classic SAX
For concreteness, we begin with a review of SAX [12]. In Figure
2.left we illustrate a short time series T, which we will use as a
running example throughout this paper.

Figure 2: left) A time series T, of length 16. right) A PAA
approximation of T, with 4 segments

A time series T of length n can be represented
in a w-dimensional space by a vector of real
numbers

wttT ,,1 K= . The ith element of T is
calculated by the equation to the left:

∑
+−=

=
i

ij
jn

w
i

w
n

w
n

Tt
1)1(

Figure 2.right shows our sample time series converted into a
representation called PAA [9]. The PAA representation reduces
the dimensionality of a time series, in this case from 16 to 4. The
SAX representation takes the PAA representation as an input and
discretizes it into a small alphabet of symbols with a cardinality
of size a. The discretization is achieved by imagining a series of
breakpoints running parallel to the x-axis and labeling each region
between the breakpoints with a discrete label. Any PAA value
that falls within that region can then be mapped to the appropriate
discrete value. Figure 3 illustrates the idea.

Figure 3: A time series T converted into SAX words of cardinality
4 {11,11,01,00} (left), and cardinality 2 {1,1,0,0} (right)

While the SAX representation supports arbitrary breakpoints, we
can ensure almost equiprobable symbols within a SAX word if we
use a sorted list of numbers Βreakpoints = β1,…,βa-1 such that the
area under a N(0,1) Gaussian curve from βi to βi+1 = 1/a (β0 and
βa are defined as -∞ and ∞, respectively). Table 2 shows a table
for such breakpoints for cardinalities from 2 to 8.

A SAX word is simply a vector of discrete symbols. We use a
boldface letter to differentiate between a raw time series and its
SAX version, and we denote the cardinality of the SAX word
with a superscript:

-3

-2

-1

0

1

2

3

4 8 12 160 4 8 12 160

00
01
10
11

0
1

SAX(T,4,4) SAX(T,4,2)

-3

-2

-1

0

1

2

3

4 8 12 160 4 8 12 160

A time series T PAA(T,4)

2000 3000 4000 5000 6000
0 0.2 0.4

0 1000
0 0.01 0.02 0.03

CBF Dataset
Two-Pat Dataset Euclidean DTW

Increasingly Large Training Sets

er
ro

r r
at

e

624

SAX(T,w,a) = Ta = {t1,t2,..,tw-1,tw}
In previous work, we represented each SAX symbol as a letter or
integer. Here however, we will use binary numbers for reasons
that will become apparent later. For example, in Figure 3 we have
converted a time series T of length 16 to SAX words. Both
examples have a word length of 4, but one has a cardinality of 4
and the other has a cardinality of 2. We therefore have
SAX(T,4,4) = T4 = {11,11,01,00} and SAX(T,4,2) = T2 =
{1,1,0,0}.

Table 2: SAX breakpoints
a

 βi
2 3 4 5 6 7 8

β1 0.00 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15
β2 0.43 0.00 -0.25 -0.43 -0.57 -0.67
β3 0.67 0.25 0.00 -0.18 -0.32

β4 0.84 0.43 0.18 0.00

β5 0.97 0.57 0.32
β6 1.07 0.67
β7 1.15

The astute reader will have noted that once we have T4 we can
derive T2 simply by ignoring the trailing bits in each of the four
symbols in the SAX word. As one can readily imagine, this is a
recursive property. For example, if we convert T to SAX with a
cardinality of 8, we have SAX(T,4,8) = T8 =
{110,110,011,000}. From this, we can convert to any lower
resolution that differs by a power of two, simply by ignoring the
correct number of bits. Table 3 makes this clearer.

Table 3: It is possible to obtain a reduced (by half) cardinality
SAX word simply by ignoring trailing bits

 SAX(T,4,16) = T16 = {1100,1101,0110,0001}
 SAX(T,4,8) = T8 = {110 ,110 ,011 ,000 }
 SAX(T,4,4) = T4 = {11 ,11 ,01 ,00 }
 SAX(T,4,2) = T2 = {1 ,1 ,0 ,0 }

As we shall see later, this ability to change cardinalities on the fly
is a useful and exploitable property.
Given two time series T and S, their Euclidean distance is:

() ()∑ −≡
=

n

i
ii STSTD

1

2,

Given a SAX representation of these time series, we can define a
lower bounding approximation to the Euclidean distance as:

MINDIST(T2,S2) ()∑ =
≡

w

i iiw
n stdist

1
2),(

This function requires calculating the distance between two SAX
symbols and can be achieved with a lookup table, as in Table 4.

Table 4: A SAX dist lookup table for a = 4

 00 01 10 11
00 0 0 0.67 1.34
01 0 0 0 0.67
10 0.67 0 0 0
11 1.34 0.67 0 0

The distance between two symbols can be read off by examining
the corresponding row and column. For example, dist(00,01) = 0
and dist(00,10) = 0.67.
For clarity, we will give a example of how to compute the lower
bound. Recall our running example T which appears in Figure 2.
If we create a time series S that is simply T’s mirror image, then
the Euclidean distance between them is D(T,S) = 46.06.

As we have already seen, SAX(T,4,4) = T4 = {11,11,01,00},
and SAX(S,4,4) = S4 = {00,01,11,11}. The invocation of the
MINDIST function will make calls to the lookup table shown in
Table 4, obtaining:

MINDIST(T2,S2) 2222
4

16 34.167.067.034.1 +++=

This produces a lower bound value of 4.237. In this case, the
lower bound is quite loose; however, having either more SAX
symbols or a higher cardinality will produce a tighter lower
bound. It is natural to ask how tight this lower bounding function
can be, relative to natural competitors like PAA or DWT. This
depends on the data itself and the cardinality of the SAX words,
but coefficient for coefficient, it is surprisingly competitive with
the other approaches. To see this, we can measure the tightness of
the lower bounds, which is defined as the lower bounding
distance over the true distance [9]. Figure 4 shows this for random
walk time series of length 256, with eight PAA or DWT
coefficients and SAX words also of length eight. We varied the
cardinality of SAX from 2 to 256, whereas PAA/DWT used a
constant 4 bytes per coefficient. The results have been averaged
over 10,000 random walk time series comparisons.

Figure 4: The tightness of lower bounds for increasing SAX
cardinalities, compared to a PAA/DWT benchmark

The results show that for small cardinalities the SAX lower bound
is quite weak, but for larger cardinalities it rapidly approaches
that of PAA/DWT. At the cardinality of 256, which take 8 bits,
the lower bound of SAX is 98.5% that of PAA/DWT, but the
latter requires 32 bits. This tells us that if we compare
representations coefficient for coefficient, there is little to choose
between them, but if we do bit-for-bit comparisons (cf. Section 5),
SAX allows for much tighter lower bounds. This is one of the
properties of SAX that can be exploited to allow ultra scalable
indexing.

3. THE iSAX REPRESENTATION
Because it is tedious to write out binary strings, previous uses of
SAX had integers or alphanumeric characters representing SAX
symbols [12]. For example:

SAX(T,4,8) = T8 = {110,110,011,000} = {6,6,3,0}

However, this can make the SAX word ambiguous. If we see just
the SAX word {6,6,3,0} we cannot be sure what the cardinality is
(although we know it is at least 7). Since all previous uses of SAX
always used a single “hard-coded” cardinality, this has not been
an issue. However, the fundamental contribution of this work is to
show that SAX allows the comparison of words with different
cardinalities, and even different cardinalities within a single word.
We therefore must resolve this ambiguity. We do this by writing
the cardinality as a superscript. For example, in the example
above:

iSAX(T,4,8) = T8 = {68,68,38,08}
Because the individual symbols are ordinal, exponentiation is not
defined for them, so there is no confusion in using superscripts in

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1

SAX

PAA/DWT

Cardinality of SAX words Ti
gh

tn
es

s
of

 lo
w

er
 b

ou
nd

625

this context. Note that we are now using iSAX instead of SAX for
reasons that will become apparent in a moment.
We are now ready to introduce a novel idea that will allow us to
greatly expand the utility of iSAX.

3.1 Comparison of iSAX Words
It is possible to compare two iSAX words of different
cardinalities. Suppose we have two time series, T and S, which
have been converted into iSAX words:
 iSAX(T,4,8) = T8 = {110,110,011,000} = {68,68,38,08}
 iSAX(S,4,2) = S2 = {0 ,0 ,1 ,1 } = {02,02,12,12}
We can find the lower bound between T and S, even though the
iSAX words that represent them are of different cardinalities. The
trick is to promote the lower cardinality representation into the
cardinality of the larger before giving it to the MINDIST function
(the proof follows from [12]).
If we think of the tentatively promoted S2 word as S8 =
{0**1,0**2,1**3,1**4}, then the question is simply what are
correct values of the missing **i bits? Note that both
cardinalities can be expressed as the power of some integer. This
guarantees an overlap in the breakpoints used during SAX
computation. More concretely, if we have an iSAX cardinality of
X, and an iSAX cardinality of 2X, then the breakpoints of the
former are a proper subset of the latter. This is shown in Figure 3.
Using this insight, we can obtain the missing bit values in S8 by
examining each position and computing the bit values at the
larger cardinality which are enclosed by the known bits at the
current (lower) cardinality and returning the one which is closest
in SAX space to the corresponding value in T8.

This method obtains the S8 representation usable for MINDIST
calculations:

S8 = {011,011,100,100}
It is important to note that this is not necessarily the same iSAX
word we would have gotten if we had converted the original time
series S. We cannot undo a lossy compression. However, using
this iSAX word does give us an admissible lower bound.
Finally, note that in addition to comparing iSAX words of
different cardinalities, the promotion trick described above can be
used to compare iSAX words where each word has mixed
cardinalities. For example, we can allow iSAX words such as
{111,11,101,0} = {78,34,58,02}. If such words exist, we can
simply align the two words in question, scan across each pair of
corresponding symbols, and promote the symbol with lower
cardinality to the same cardinality as the larger cardinality
symbol. In the next section, we explain why it is useful to allow
iSAX words with different cardinalities.

4. iSAX INDEXING
4.1 The Intuition Behind iSAX Indexing
As it stands, it may appear that the classic SAX representation
offers the potential to be indexed. We could choose a fixed
cardinality of, say, 8 and a word length of 4, and thus have 84
separate labels for files on disk. For instance, our running
example T maps to {68,68,38,08} under this scheme, and would
be inserted into a file that has this information encoded in its
name. The query answering strategy would be very simple. We
could convert the query into a SAX word with the same
parameters, and then retrieve the file with that label from disk.

The time series in that file are likely to be very good approximate
matches to the query. To find the exact match, we could measure
the distance to the best approximate match, then retrieve all files
from disk whose label has a MINDIST value less than the value
of the best-so-far match. Such a methodology clearly guarantees
no false dismissals.
This scheme has a fatal flaw, however. Suppose we have a million
time series to index. With 4,096 possible labels, the average file
would have 244 time series in it, a reasonable number. However,
this is the average. For all but the most contrived datasets we find
a huge skew in the distribution, with more than half the files being
empty, and the largest file containing perhaps 20% of the entire
dataset. Either situation is undesirable for indexing, in the former
case, if our query maps to an empty file, we would have to do
some ad-hoc trick (perhaps trying “misspellings” of the query
label) in order to get the first approximate answer back. In the
latter case, if 20% of the data must be retrieved from disk, then
we can be at most five times faster than sequential scan. Ideally,
we would like to have a user defined threshold th, which is the
maximum number of time series in a file, and a mapping
technique that ensures each file has at least one and at most th
time series in it. As we shall now see, iSAX allows us to
guarantee exactly this.
iSAX offers a multi-resolution, bit-aware, quantized, reduced
representation with variable granularity. It is this variable
granularity that allows us to solve the problem above. Imagine
that we are in the process of building the index and have chosen
th = 100. At some point there may be exactly 100 time series
mapped to the iSAX word {24,34,34,24}. If, as we continue to
build the index, we find another time series maps here, we have
an overflow, so we split the file. The idea is to choose one iSAX
symbol, examine an additional bit, and use its value to create two
new files. In this case:

Original File: {24,34,34,24} splits into: Child file 1: {48,34,34,24}
 Child file 2: {58,34,34,24}

Note that in this example we split on the first symbol, promoting
the cardinality from 4 to 8. For some time series in the file, the
extra bit in their first iSAX symbol was a 1, and for others it was
a 0. In the former case, they are remapped to Child 1, and in the
latter, remapped to Child 2. The child files can be named with
some protocol that indicates their variable cardinality.
The astute reader will have noticed that the intuition here is very
similar to the classic idea of extensible hashing. This in essence is
the intuition behind building an iSAX index, although we have
not explained how we decide which symbol is chosen for
promotion and some additional details. In the next sections, we
formalize this intuition and provide details on algorithms for
approximately and exactly searching an iSAX index.

4.2 iSAX Index Construction
As noted above, a set of time series represented by an iSAX word
can be split into two mutually exclusive subsets by increasing the
cardinality along one or more dimensions. The number of
dimensions d and word length, w, 1 ≤ d ≤ w, provide an upper
bound on the fan-out rate. If each increase in cardinality per
dimension follows the assumption of iterative doubling, then the
alignment of breakpoints contains overlaps in such a way that
hierarchical containment is preserved between the common iSAX
word and the set of iSAX words at the finer granularity.
Specifically, in iterative doubling, the cardinality to be used after

626

the ith increase in granularity is in accordance with the following
sequence, given base cardinality b: b*2i. The maximum fan-out
rate under such an assumption is 2d.
The use of iSAX allows for the creation of index structures that
are hierarchical, containing non-overlapping regions [2] (unlike
R-trees etc [6]), and a controlled fan-out rate. For concreteness,
we depict in Figure 5 a simple tree-based index structure which
illustrates the efficacy and scalability of indexing using iSAX.

Figure 5: An illustration of an iSAX index

The index is constructed given base cardinality b, word length w,
and threshold th (b is optional; it can be defaulted to 2 or be set for
evaluation to begin at higher cardinality). The index structure
hierarchically subdivides the SAX space, resulting in differentiation
between time series entries until the number of entries in each
subspace falls below th. Such a construct is implemented using a
tree, where each node represents a subset of the SAX space such
that this space is a superset of the SAX space formed by the union
of its descendents. A node’s representative SAX space is congruent
with an iSAX word and evaluation between nodes or time series is
done through comparison of iSAX words. The three classes of
nodes found in a tree and their respective functionality are described
below:
Terminal Node: A terminal node is a leaf node which contains a

pointer to an index file on disk with raw time series entries. All
time series in the corresponding index file are characterized by the
terminal node’s representative iSAX word. A terminal node
represents the coarsest granularity necessary in SAX space to
enclose the set of contained time series entries. In the event that an
insertion causes the number of time series to exceed th, the SAX
space (and node) is split to provide additional differentiation.

Internal Node: An internal node designates a split in SAX space
and is created when the number of time series contained by a
terminal node exceeds th. The internal node splits the SAX space
by promotion of cardinal values along one or more dimensions as
per the iterative doubling policy. A hash from iSAX words
(representing subdivisions of the SAX space) to nodes is
maintained to distinguish differentiation between entries. Time
series from the terminal node which triggered the split are inserted
into the newly created internal node and hashed to their respective
locations. If the hash does not contain a matching iSAX entry, a
new terminal node is created prior to insertion, and the hash is
updated accordingly. For simplicity, we employ binary splits
along a single dimension, using round robin to determine the split
dimension.

Root Node: The root node is representative of the complete SAX
space and is similar in functionality to an internal node. The root
node evaluates time series at base cardinality, that is, the
granularity of each dimension in the reduced representation is b.
Encountered iSAX words correspond to some terminal or internal
node and are used to direct index functions accordingly. Un-

encountered iSAX words during inserts result in the creation of a
terminal node and a corresponding update to the hash table.

Pseudo-code of the insert function used for index construction is
shown in Table 5. Given a time series to insert, we first obtain the
iSAX word representation using the respective iSAX parameters at
the current node (line 2). If the hash table does not yet contain an
entry for the iSAX word, a terminal node is created to represent the
relevant SAX space, and the time series is inserted accordingly
(lines 22-24). Otherwise, there is an entry in the hash table, and the
corresponding node is fetched. If this node is an internal node, we
call its insert function recursively (line 19). If the node is a terminal
node, occupancy is evaluated to determine if an additional insert
warrants a split (line 7). If so, a new internal node is created, and all
entries enclosed by the overfilled terminal node are inserted (lines
10-16). Otherwise, there is sufficient space and the entry is simply
added to the terminal node (line 8).

Table 5: iSAX index insertion function
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Function Insert(ts)
iSAX_word = iSAX(ts, this.parameters)

if Hash.ContainsKey(iSAX_word)
 node = Hash.ReturnNode(iSAX_word)
 if node is terminal
 if SplitNode() == false
 node.Insert(ts)
 else
 newnode = new internal
 newnode.Insert(ts)
 foreach ts in node
 newnode.Insert(ts)
 end
 Hash.Remove(iSAX_word, node)
 Hash.Add(iSAX_word, newnode)
 endif
 elseif node is internal
 node.Insert(ts)
 endif
else
 newnode = new terminal
 newnode.Insert(ts)
 Hash.Add(iSAX_word, newnode)
endif

The deletion function is obvious and omitted for brevity.

4.3 Approximate Search
For many data mining applications, an approximate search may
be all that is required. An iSAX index is able to support very fast
approximate searches; in particular, they only require a single
disk access. The method of approximation is derived from the
intuition that two similar time series are often represented by the
same iSAX word. Given this assumption, the approximate result
is obtained by attempting to find a terminal node in the index with
the same iSAX representation as the query. This is done by
traversing the index in accordance with split policies and
matching iSAX representations at each internal node. Because the
index is hierarchical and without overlap, if such a terminal node
exists, it is promptly identified. Upon reaching this terminal node,
the index file pointed to by the node is fetched and returned. This
file will contain at least 1 and at most th time series in it. A main
memory sequential scan over these time series gives the
approximate search result.
In the (very) rare case that a matching terminal node does not
exist, such a traversal will fail at an internal node. We mitigate the
effects of non-matches by proceeding down the tree, selecting
nodes whose last split dimension has a matching iSAX value with
the query time series. If no such node exists at a given junction,
we simply select the first, and continue the descent.

{0*,0*,1*} [0*,1*,1*] [0*,1*,0*]

root

{00,1*,1*} [01,1*,1*]

{01,11,1*} [01,10,1*]

{01,10,10} {01,10,11}

Internal nodes

Terminal nodes

627

4.4 Exact Search
Obtaining the exact nearest neighbor to a query is both
computationally and I/O intensive. To improve search speed, we
use a combination of approximate search and lower bounding
distance functions to reduce the search space. The algorithm for
obtaining the nearest neighbor is presented as pseudo-code in
Table 6.
The algorithm begins by obtaining an approximate best-so-far
(BSF) answer, using approximate search as described in Section
4.3 (lines 2-3). The intuition is that by quickly obtaining an entry
which is a close approximation and with small distance to the
nearest neighbor, large sections of the search space can be pruned.
Once a baseline BSF is obtained, a priority queue is created to
examine nodes whose distance is potentially less than the BSF.
This priority queue is first initialized with the root node (line 6).
Because the query time series is available to us, we are free to use
its PAA representation to obtain a tighter bound than the
MINDIST between two iSAX words. More concretely, the
distance used for priority queue ordering of nodes is computed
using MINDIST_PAA_iSAX, between the PAA representation of
the query time series and the iSAX representation of the SAX
space occupied by a node.
Given the PAA representation, TPAA of a time series T and the
iSAX representation, SiSAX of a time series S, such that |TPAA| =
|SiSAX| = w, |T| = |S| = n, and recalling that the jth cardinal value of
SiSAX derives from a PAA value, v between two breakpoints βL,
βU, βL < v ≤ βU, 1 ≤ j ≤ w we define the lower bounding distance
as:

MINDIST_PAA_iSAX(TPAA, SiSAX) = ()
()∑ =
⎪
⎩

⎪
⎨

⎧

<−
>−

w

i PAAiUiPAAiUi

PAAiLiPAAiLi

w
n

otherwise
TifT
TifT

1
2

2

0
ββ
ββ

Recall that we use distance functions that lower bound the true
Euclidean distance. That is, if the BSF distance is less than or
equal to the minimum distance from the query to a node, we can
discard the node and all descendants from the search space
without examining their contents or introducing any false
dismissals.
The algorithm then repeatedly extracts the node with the smallest
distance value from the priority queue, terminating when either
the priority queue becomes empty or an early termination
condition is met. Early termination occurs when the lower bound
distance we compute equals or exceeds the distance of the BSF.
This implies that the remaining entries in the queue cannot qualify
as the nearest neighbor and can be discarded.
If the early termination condition is not met (line 10), the node is
further evaluated. In the case that the node is a terminal node, we
fetch the index file from disk and compute the distance from the
query to each entry in the index file, recording the minimum
distance (line 14). If this distance is less than our BSF, we update
the BSF (lines 16-17).
In the case that the node is an internal node or the root node, its
immediate descendents are inserted into the priority queue (lines
20-23). The algorithm then repeats by extracting the next
minimum node from the priority queue.
Before leaving this section, we note that we have only discussed
1NN queries. Extensions to KNN and range queries are trivial and
obvious, and are omitted for brevity.

Table 6: Expediting exact search using approximate search and
lower bounding distance functions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Function [IndexFile] = ExactSearch(ts)
BSF.IndexFile = ApproximateSearch(ts)
BSF.dist = IndexFileDist(ts, BSF.IndexFile)

PriorityQueue pq
pq.Add(root)

while !pq.IsEmpty
 min = pq.ExtractMin()
 if min.dist >= BSF.dist
 break
 endif
 if min is terminal
 tmp = IndexFileDist(ts, min.IndexFile)
 if BSF.dist > tmp
 BSF.dist = tmp
 BSF.IndexFile = min.IndexFile
 endif
 elseif min is internal or root
 foreach node in min.children
 node.dist = MINDIST_PAA_iSAX(ts,node.iSAX)
 pq.Add(node)
 end
 endif
end
return BSF.IndexFile

5. EXPERIMENTS
We begin by discussing our experimental philosophy. We have
designed all experiments such that they are not only reproducible,
but easily reproducible. To this end, we have built a webpage
which contains all the datasets used in this work, together with
spreadsheets which contain the raw numbers displayed in all the
figures [10]. In addition, the webpage contains many additional
experiments which we could not fit into this work; however, we
note that this paper is completely self-contained.
Experiments are conducted on an AMD Athlon 64 X2 5600+ with
3GB of memory, Windows XP SP2 with /3GB switch enabled,
and using version 2.0 of the .NET Framework. All experiments
used a 400GB Seagate Barracuda 7200.10 hard disk drive with
the exception of the 100M random walk experiment, which
required more space, there we used a 750GB Hitachi Deskstar
7K10000.

5.1 Tightness of Lower Bounds
It is important to note that the rivals to iSAX are other time series
representations, not indexing structures such as R-Trees, VP-
Trees etc. We therefore begin with a simple experiment to
compare the tightness of lower bounds of iSAX with the other
lower bounding time series representations, including DFT, DWT,
DCT, PAA, CHEB, APCA and IPLA. We measure TLB, the
tightness of lower bounds [9]. This is calculated as:

 TLB = LowerBoundDist(T,S) / TrueEuclideanDist(T,S)
Because DWT and PAA have exactly the same TLB [9] we show
one graphic for both. We randomly sample T and S (with
replacement) 1,000 times for each combination of parameters. We
vary the time series length [480, 960, 1440, 1920] and the number
of bytes per time series available to the dimensionality reduction
approach [16, 24, 32, 40]. We assume that each real valued
representation requires 4 bytes per coefficient, thus they use [4, 6,
8, 10] coefficients. For iSAX, we hard code the cardinality to 256,
resulting in [16, 24, 32, 40] symbols per word.
Recall that, for TLB, larger values are better. If the value of TLB
is zero, then any indexing technique is condemned to retrieving
every object from the disk. If the value of TLB is one, then there
is no search, we could simply retrieve one object from disk and

628

guarantee that we had the true nearest neighbor. Figure 6 shows
the result of one such experiment with an ECG dataset.

Figure 6: The tightness of lower bounds for various time series
representations on the Koski ECG dataset. Similar graphs for
thirty additional datasets can be found at [10]

Note that the speedup obtained is generally non-linear in TLB,
that is to say if one representation has a lower bound that is twice
as large as another, we can usually expect a much greater than
two-fold decrease in disk accesses.
In a sense, it may be obvious before doing this experiment that
iSAX will have a smaller reconstruction error, thus a tighter lower
bound, and greater indexing efficiency than the real valued
competitors. This is because iSAX is taking advantage of every
bit given to it. In contrast, for the real valued approaches it is
clear that the less significant bits contribute much less information
than the significant bits. If the raw time series is represented with
4 bytes per data point, then each real valued coefficient must also
have 4 bytes (recall that orthonormal transforms are merely
rotations in space). This begs the question, why not quantize or
truncate the real valued coefficients to save space? In fact, this is
a very common idea in compression of time series data. For
example, in the medical domain it is frequently done for both the
wavelet [5] and cosine [3] representations. However, recall that
we are not interested in compression per se. Our interest is in
dimensionality reduction that allows indexing with no false
dismissals. If, for the other approaches, we save space by
truncating the less significant bits, then at least under the IEEE
Standard for Binary Floating-Point Arithmetic (IEEE 754) default
policy for rounding (RoundtoNearest) it is possible the distance
between two objects can increase, thus violating the no false
dismissals guarantee.

Figure 7: The experiment in the previous figure redone with the
iSAX word length equal to the dimensionality of the real valued
applications (just DCT is shown to allow a “zoom in”)

We have no doubt that an indexable bit-adjustable version of the
real valued representations could be made to work, however, none
exists to date. Even if we naively coded each iSAX word with the
same precision as the real valued approaches (thus wasting 75%
of the main memory space), iSAX is still competitive with the
other approaches; this is shown in Figure 7. Before leaving this
section, we note that we have repeated these experiments with
thirty additional datasets from very diverse domains with
essentially the same results [10].

5.2 Indexing Massive Datasets
We tested the accuracy of approximate search for increasingly
large random walk databases of sequence length 256, containing
[one, two, four, eight] million time series. We used b = 4, w = 8,
and th = 100. This created [39,255, 57,365, 92,209, 162,340] files
on disk. We generated 1,000 queries, did an approximate search,
and then compared the results with the true ranking which we
later obtained with a sequential scan. Figure 8 shows the results.

Figure 8: The percentage of cutoffs for various rankings, for
increasingly large databases with approximate search

The figure tells us that when searching one million time series,
91.5% of the time approximate search returns an answer that
would rank in the top 100 of the true nearest neighbor list.
Furthermore, that percentage only slightly decreases as we scale
to eight million time series. Likewise, again, for one million
objects, more than half the time the approximate searches return
an object that would rank in the top 10, and 14% of the time it
returns the true nearest neighbor. Recall that these searches
require exactly one disk access and at most 100 Euclidean
distance calculations, so the average time for a query was less
than a second.
We also conducted exact search experiments on 10% of the
queries. For our four different sized datasets, exact search
required an average of [2115.3, 3172.5, 4925.3, 7719.1] disk
accesses and finished in an average time of [3.8, 5.8, 9.0, 14.1]
minutes, in contrast to sequential scan, which took [71.5, 104.8,
168.8, 297.6] minutes.
To push the limits of indexing, we considered indexing
100,000,000 random walk time series of length 256. To the best
of our knowledge, this is as least two orders of magnitude larger
that any other dataset considered in the literature [2][4][6][13].
Since the publication of Don Quixote de la Mancha in the 17th
century, the idiom, “a needle in a haystack” has been used to
signify a near impossible search. If each time series in this
experiment was represented by a piece of hay the size of a
drinking straw, they would form a cube shaped haystack with 262
meter sides.
Because of the larger size of data, we increased th to 2,000, and
used w of 16. This created 151,902 files occupying a half terabyte
of disk space. The average occupancy of index files is
approximately 658.
We issued ten new random walk approximate search queries.
Each query was answered in an average of 1.15 seconds. To find
out how good each answer was, we did a linear scan of the data to
find the true rankings of the answers. Three of the queries did
actually discover their true nearest neighbor, the average rank was
8, and the worst query “only” managed to retrieve its 25th nearest
neighbor. In retrospect, these results are extraordinarily
impressive. Faced with one hundred million objects on disk, we
can retrieve only 0.0013895% of the data and find an object that
is ranked the top 0.0001%. As we shall see in Sections 5.3/5.4, the
extraordinary precision and speed of approximate search

48
0

96
0

14
40

19
20

16 bytes
24 bytes

32 bytes
40 bytes

0 0.2 0.4 0.6 0.8
iSAX, DCT, ACPA, DFT, PAA/DWT, CHEB, IPLA

0 500 1000

Koski ECG

TL
B

1 from top 100

1m 2m 4m 8m0

20

40

60

80

100

1 from top 10

1 from top 1 (true nearest neighbor)
Outside top 1000

Size of Random Walk Database

480 960 1440 1920 480 960 1440 1920
4

6

8
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iSAX
DCT

TL
B

629

combined with fast exact search allows us to consider mining
datasets with millions of objects.
We also conducted exact searches on this dataset; each search
took an average of 90 minutes to complete, in contrast to a linear
scan taking 1,800 minutes.

5.3 Time Series Set Difference
In this section, we give an example of a data mining algorithm
that can be built on top of our existing indexing algorithms. The
algorithm is interesting in that it uses both approximate search
and exact search to compute the ultimate (exact) answer to a
problem.
Suppose we are interested in contrasting two collections of time
series data. For example, we may be interested in contrasting
telemetry from the last Shuttle launch with telemetry from all
previous launches, or we may wish to contrast the ten minutes of
electrocardiograms just before a patient wakes up with the
preceding seven hours of sleep.
To do this, we define the Time Series Set Difference (TSSD):

Definition: Time Series Set Difference(A,B). Given two
collections of time series A and B, the time series set
difference is the subsequence in A whose distance from its
nearest neighbor in B is maximal.

Note that we are not claiming that this is the best way to contrast
two time series; it is merely a sensible definition we can use as a
starting point.
We tested this definition on an electrocardiogram dataset. The
data is an overnight polysomnogram with simultaneous three-
channel Holter ECG from a 45 year old male subject with
suspected sleep-disordered breathing. We used the first 7.2 hours
of the data as the reference set B, and the next 8 minutes 39
seconds as the “novel” set A. The set A corresponds to the period
in which the subject woke up. After indexing the data with an
iSAX word length of 9 and a maximum threshold value of 100,
we had 1,000,000 time series subsequences in 31,196 files on
disk, occupying approximately 4.91GB of secondary storage.
Figure 9 show the TSSD discovered.

Figure 9: The Time Series Set Difference discovered between ECGs
recorded during a waking cycle and the previous 7.2 hours

We showed the result to UCLA cardiologist Helga Van Herle.
She noted that the p-waves in each of the full heartbeats look the
same, but there is a 21.1% increase in the length of the second
one. This indicated to her that this is almost certainly an example
of sinus arrhythmia, where the R-R intervals are changing with
the patients breathing pattern. This is likely due to slowing of the
heart rate with expiration and increase of the heart rate with
inspiration, given that it is well known that respiration patterns
change in conjunction with changes in sleep stages.
An obvious naive algorithm to find the TSSD is to do 20,000
exact searches, one for each object in A. This requires (“only”)
325,604,200 Euclidean distance calculations, but it requires
approximately 5,676,400 disk accesses, for 1.04 days of wall
clock time. This is clearly untenable.

We propose a simple algorithm to find the TSSD that exploits the
fact that we can do both ultra fast approximate search and fast
exact search. We assume that set B is indexed and that set A is in
main memory. The algorithm is sketched out in Table 7.

Table 7: An outline of an algorithm to find the TSSD
For each time series in A, find its approximate NN in B

Place each time series in a priority queue sorted by
its NN distance in descending order.

BEGIN

Remove the time series at the head of the queue.
Begin an exact search for its nearest neighbor.

If at any point during this search the best-so-far
value becomes less than the value at the top of the
priority queue, reinsert the time series back into
the priority queue with the best-so-far value as the
key, then goto BEGIN.

Otherwise we must have found the true nearest
neighbor and its distance is greater than the top of
the priority queue, so we have the true TSSD. Report
success.

To find the discordant heartbeats shown in Figure 9, our
algorithm did 43,779 disk accesses (20,000 in the first
approximate stage, and the remainder during the refinement
search phase), and performed 2,365,553 Euclidean distance
calculations. The number of disk accesses for a sequential scan
algorithm is somewhat better; it requires only 31,196 disk reads,
about 71% of what our algorithm required. However, sequential
scan requires 20,000,000,000 Euclidean distance calculations,
which is 8,454 times greater than our approach and would require
an estimated 6.25 days to complete. In contrast, our algorithm
takes only 34 minutes.
Our algorithm is much faster because it exploits the fact that that
most candidates in set A can be quickly eliminated by very fast
approximate searches. In fact, of the 20,000 objects in set A for
this experiment, only two of them (obviously including the
eventual answer) had their true nearest neighbor calculated. Of
the remainder, 17,772 were eliminated based only on the single
disk access made in phase one of the algorithm, and 2,226
required more than one disk access, but less than a compete
nearest neighbor search.

5.4 Batch Nearest Neighbor Search
We consider another problem which can be exactly solved with a
combination of approximate and exact search. The problem is that
of batch nearest neighbor search. We begin with a concrete
example of the problem before showing our iSAX-based solution.
Here the context of DNA is used to provide a real world dataset
with results which can be easily verified.
It has long been known that all the great apes except humans have
24 chromosomes. Humans, having 23, are quite literally the odd
man out. This is widely accepted to be a result of an end-to-end
fusion of two ancestral chromosomes. Suppose we do not know
which of the ancestral chromosomes were involved in the fusion,
we could attempt to efficiently discover this with iSAX.
We begin by converting DNA into time series, using the approach
shown in Table 8.

We converted Contig NT_005334.15 of the human chromosome 2
to time series in this manner, and then indexed all subsequences
of length 1024 using a sliding window. There are a total of
11,246,491 base pairs and a total of 5,622,734 time series
subsequences written to disk.

0 50 100 150 200 250
-4
0
4

 109 90

630

Table 8: An algorithm for converting DNA to time series
T1 = 0;
For i = 1 to length(DNAstring)

If DNAstringi = A, then Ti+1 = Ti + 2
If DNAstringi = G, then Ti+1 = Ti + 1
If DNAstringi = C, then Ti+1 = Ti - 1
If DNAstringi = T, then Ti+1 = Ti - 2

End
We converted 43 randomly chosen subsequences of length 1024
of chimpanzee’s (Pan troglodytes) DNA in the same manner. We
made sure that the 43 samples included at least one sample from
each of the chimps 24 chromosomes.
We performed a search to find the chimp subsequence that had
the nearest nearest-neighbor in the human reference set. Figure
10 shows the two subsequences plotted together. Note that while
the original DNA strings are very similar, they are not identical.

Figure 10: Corresponding sections of human and chimpanzee DNA

Once again, this is a problem where a combination of exact and
approximate search can be useful. To speed up the search we use
batch nearest neighbor search. We define this as the search for
the object O in a (relatively small) set A, which has the smallest
nearest neighbor distance to an object in a larger set B. Note that
to solve this problem, we really only need one exact distance, for
object O, to be known. For the remaining objects in A, it suffices
to know that a lower bound on their nearest neighbors is greater
than the distance from O to its nearest neighbor. With this in
mind, we can define an algorithm which is generally much faster
than performing exact search for each of the objects in A. Table 9
outlines the algorithm.

Table 9: Batch Nearest Neighbor Algorithm
For each time series in A, find its approximate NN in B
and record the object O, with the smallest approximate
distance.

Do an exact search for its nearest neighbor using
ExactSearch(O) (cf Table 6). Record the distance as
O.dist
End
For all remaining objects in A

Perform ExactSearch(ts), as in Table 6 but change
lines 2-3 such that BSF.dist is initialized to
O.dist

If ExactSearch terminates with null, then this
object can not be closer to its nearest neighbor
than O.
Else This object Onew was closer to its nearest
neighbor than O. So O = Onew

End
We can see this algorithm as an anytime algorithm [16]. After the
first phase, our algorithm has an approximate answer that we can
examine. As the algorithm continues working in the background
to confirm or adjust that answer, we can evaluate the current
answer and make a determination of whether to terminate or allow
the algorithm to persist.

In this particular experiment, the first phase of the algorithm
returns an answer (which we later confirm to be the exact
solution) in just 12.8 seconds, finding that the randomly chosen
substring of chimp chromosome 2A, beginning at 7,582 of Contig
NW_001231255 is a stunningly close match to the substring
beginning at 999,645 of the Contig NT_005334.15 of human
chromosome 2. The full algorithm terminates in 21.8 minutes. In
contrast, a naive sequential scan takes 13.54 hours.

6. CONCLUSIONS
We introduced iSAX, a representation that supports indexing of
massive datasets, and have shown it can index up to one hundred
million time series. We have also provided examples of
algorithms that use a combination of approximate and exact
search to ultimately produce exact results on massive datasets.
Other time series data mining algorithms such as motif discovery,
density estimation, discord discovery, and clustering can similarly
take advantage of combining both types of search. We plan to
consider such problems in future work.

7. REFERENCES
[1] André-Jönsson, H. and Badal, D. Z. 1997. Using Signature

Files for Querying Time-Series Data. In Proc 1st PKDD.
[2] Assent, I., Krieger, R., Afschari, F., and Seidl, T. 2008. The

TS-tree: efficient time series search and retrieval. In Proc of
the 11th EDBT.

[3] Batista, L. V., Melcher, E. U. K., Carvalho, L.C. 2001.
Compression of ECG signals by optimized quantization of
DCT coefficients. Medical Engineering & Physics.

[4] Cai, Y. and Ng, R. 2004. Indexing spatio-temporal
trajectories with Chebyshev polynomials. In Proc of the
2004 SIGMOD.

[5] Chen, J. and Itoh, S. 1998. A wavelet transform-based ECG
compression method guaranteeing desired signal quality.
IEEE Transactions on Bio Engineering.

[6] Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. 1994.
Fast subsequence matching in time-series databases. In Proc
of the 1994 ACM SIGMOD.

[7] Huang, Y. and Yu, P. S. 1999. Adaptive query processing for
time-series data. In Proc of the 5th ACM SIGKDD.

[8] Jeffery, C. 2005. Synthetic Lightning EMP Data.
http://public.lanl.gov/eads/datasets/emp/index.html

[9] Keogh, E., Chakrabarti, K., Pazzani, M.J, and S. Mehrotra.
2001. Dimensionality Reduction for Fast Similarity Search
in Large Time Series Databases. KAIS.

[10] Keogh, E., and Shieh, J. 2008. iSAX home page
www.cs.ucr.edu/~eamonn/iSAX/iSAX.html

[11] Keogh, E. 2008. www.cs.ucr.edu/~eamonn/SAX.htm
[12] Lin, J., Keogh, E., Wei, L. and Lonardi, S. 2007.

Experiencing SAX: a novel symbolic representation of time
series. Data Mining and Knowledge Discovery.

[13] Megalooikonomou, V., Wang, Q., Li, G., and Faloutsos, C.
2005. A Multiresolution Symbolic Representation of Time
Series. In Proc of the 21st ICDE.

[14] Ratanamahatana, C. A. and Keogh, E. 2005. Three Myths
about Dynamic Time Warping. In Proc of the 2005 SDM.

[15] Steinbach, M., Tan, P., Kumar, V., Klooster, S., and Potter,
C. 2003. Discovery of climate indices using clustering. In
Proc of the 9th ACM SIGKDD.

[16] Xi, X., Keogh, E., Shelton, C., Wei, L., and Ratanamahatana,
C. A. 2006. Fast time series classification using numerosity
reduction. In Proc of the 23rd ICML

Human 2:

Chimp 2A:
0 200 400 600 800 1000

Zoom-In

Section 710 to 890

Human: GTCAAT…AAGAGATTTG

Chimp: GGCAAT…ACAGATTTGA

631

