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ABSTRACT 
Current research in indexing and mining time series data has 
produced many interesting algorithms and representations. 
However, the algorithms and the size of data considered have 
generally not been representative of the increasingly massive 
datasets encountered in science, engineering, and business 
domains. In this work, we show how a novel multi-resolution 
symbolic representation can be used to index datasets which are 
several orders of magnitude larger than anything else considered 
in the literature. Our approach allows both fast exact search and 
ultra fast approximate search. We show how to exploit the 
combination of both types of search as sub-routines in data 
mining algorithms, allowing for the exact mining of truly massive 
real world datasets, containing millions of time series.     

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining 
General Terms 
Algorithms, Experimentation 

Keywords 
Time Series, Data Mining, Representations, Indexing  

1. INTRODUCTION 
The increasing level of interest in indexing and mining time series 
data has produced many algorithms and representations. 
However, with few exceptions, the size of datasets considered, 
indexed, and mined seems to have stalled at the megabyte level. 
At the same time, improvements in our ability to capture and store 
data have lead to the proliferation of terabyte-plus time series 
datasets. In this work, we show how a novel multi-resolution 
symbolic representation called indexable Symbolic Aggregate 
approXimation (iSAX) can be used to index datasets which are 
orders of magnitude larger than anything else considered in 
current literature.  
The iSAX approach allows for both fast exact search and ultra 
fast approximate search. Beyond mere similarity search, we show 
how to exploit the combination of both types of search as sub-
routines in data mining algorithms, permitting the exact mining of 
truly massive datasets, with millions of time series, occupying up 
to a terabyte of disk space.  

Our approach is based on a modification of the SAX 
representation to allow extensible hashing [12]. In essence, we 
show how we can modify SAX to be a multi-resolution 
representation, similar in spirit to wavelets. It is this multi-
resolution property that allows us to index time series with zero 
overlap at leaf nodes as in TS-tree [2], unlike R-trees and other 
spatial access methods.  
As we shall show, our indexing technique is fast and scalable due 
to intrinsic properties of the iSAX representation. Because of this, 
we do not require the use of specialized databases or file 
managers.  Our results, conducted on massive datasets, are all 
achieved using a simple tree structure which simply uses the 
standard Windows XP NTFS file system for disk access. While it 
might have been possible to achieve faster times with a 
sophisticated DBMS, we feel that the simplicity of this approach 
is a great strength, and will allow easy adoption, replication, and 
extension of our work. 
A further advantage of our representation is that, being symbolic, 
it allows the use of data structures and algorithms that are not well 
defined for real-valued data, including suffix trees, hashing, 
Markov models etc [12]. Furthermore, given that iSAX is a 
superset of classic SAX, the several dozen research groups that 
use SAX will be able to adopt iSAX to improve scalability [11]. 
The rest of the paper is organized as follows. In Section 2 we 
review related work and background material. Section 3 
introduces the iSAX representation, and Section 4 shows how it 
can be used for approximate and exact indexing. In Section 5 we 
perform a comprehensive set of experiments on both indexing and 
data mining problems. Finally, in Section 6 we offer conclusions 
and suggest directions for future work. 

2. BACKGROUND AND RELATED WORK 
2.1 Time Series Distance Measures 
It is increasingly understood that Dynamic Time Warping (DTW) 
is better than Euclidean Distance (ED) for most data mining tasks 
in most domains [16]. It is therefore natural to ask why we are 
planning to consider Euclidean distance in this work. The well 
documented superiority of DTW over ED is due to the fact that in 
small datasets it might be necessary to warp a little to match the 
nearest neighbor.  However, in larger datasets one is more likely 
to find a close match without the need to warp. As DTW warps 
less and less, it degenerates to simple ED. This was first noted in 
[14] and later confirmed in [16] and elsewhere. For completeness, 
we will show a demonstration of this effect. We measured the 
classification accuracy of both DTW and ED on increasingly 
large datasets containing the CBF and Two-Pat problems, two 
classic time series benchmarks. Both datasets allow features to 
warp up to 1/8 the length of the sequence, so they may be 
regarded as highly  warped datasets.  Figure 1  shows  the   result.   
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Figure 1: The error rate of DTW and ED on increasingly large 
instantiations of the CBF and Two-Pat problems. For even 
moderately large datasets, there is no difference in accuracy   

As we can see, for small datasets, DTW is significantly more 
accurate than ED. However, as the datasets get larger, the 
difference diminishes, and by the time there are mere thousands 
of objects, there is no measurable difference. In spite of this, and 
for completeness, we explain in an offline Appendix [10] that we 
can index under DTW with iSAX with only trivial modifications.  

2.2 Time Series Representations 
There is a plethora of time series representations proposed to 
support similarity search and data mining. Table 1 show the major 
techniques arranged in a hierarchy.     

Table 1: A Hierarchy of Time Series Representations 

• Model Based 
o Markov Models 
o Statistical Models 
o Time Series Bitmaps 

• Data Adaptive 
o Piecewise Polynomials 

 Interpolation* 
 Regression  

o Adaptive Piecewise Constant Approximation* 
o Singular Value Decomposition* 
o Symbolic 

 Natural Language 
 Strings 

• Non-Lower Bounding [1][7][13] 
• SAX* [12],   iSAX* 

o Trees 
• Non-Data Adaptive 

o Wavelets* 
o Random Mappings 
o Spectral 

 DFT* [6] 
 DCT* 
 Chebyshev Polynomials* [4] 

o Piecewise Aggregate Approximation* [9] 
• Data Dictated 

o Clipped Data* 
Those representations annotated with an asterisk have the very 
desirable property of allowing lower bounding. That is to say, we 
can define a distance measurement on the reduced abstraction that 
is guaranteed to be less than or equal to the true distance 
measured on the raw data. It is this lower bounding property that 
allows us to use a representation to index the data with a 
guarantee of no false dismissals [6]. The list of such 
representations includes (in approximate order of introduction) 
the discrete Fourier transform (DFT) [6], the discrete Cosine 
transform (DCT), the discrete Wavelet transform (DWT), 
Piecewise Aggregate Approximation (PAA) [8], Adaptive 
Piecewise Constant Approximation (APCA), Chebyshev 
Polynomials (CHEB) [4] and Indexable Piecewise Linear 
Approximation (IPLA). We will provide the first empirical 
comparison of all these techniques in Section 5. 
The only lower bounding omissions from our experiments are the 
eigenvalue analysis techniques such as SVD and PCA. While 
such techniques give optimal linear dimensionality reduction, we 
believe they are untenable for massive datasets. For example, 

while [15] notes that they can transform 70,000 time series in 
under 10 minutes, this assumes the data can fit in main memory. 
However, to transform all the out-of-core (disk resident) datasets 
we consider in this work, SVD would require several months. 
There have been several dozen research efforts that propose to 
facilitate time series search by first symbolizing the raw data 
[1][7][13]. However, in every case, the authors introduced a 
distance measure defined on the newly derived symbols. This 
allows false dismissals with respect to the original data. In 
contrast, the proposed work uses the symbolic words to internally 
organize and index the data, but retrieves objects with respect to 
the Euclidean distance on the original raw data.  

2.3 Review of Classic SAX 
For concreteness, we begin with a review of SAX [12]. In Figure 
2.left we illustrate a short time series T, which we will use as a 
running example throughout this paper. 

 
Figure 2: left) A time series T, of length 16. right) A PAA 
approximation of T, with 4 segments 

A time series T of length n can be represented 
in a w-dimensional space by a vector of real 
numbers 
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Figure 2.right shows our sample time series converted into a 
representation called PAA [9]. The PAA representation reduces 
the dimensionality of a time series, in this case from 16 to 4. The 
SAX representation takes the PAA representation as an input and 
discretizes it into a small alphabet of symbols with a cardinality 
of size a. The discretization is achieved by imagining a series of 
breakpoints running parallel to the x-axis and labeling each region 
between the breakpoints with a discrete label. Any PAA value 
that falls within that region can then be mapped to the appropriate 
discrete value. Figure 3 illustrates the idea. 

 
Figure 3: A time series T converted into SAX words of cardinality 
4 {11,11,01,00} (left),  and cardinality 2 {1,1,0,0} (right) 

While the SAX representation supports arbitrary breakpoints, we 
can ensure almost equiprobable symbols within a SAX word if we 
use a sorted list of numbers Βreakpoints = β1,…,βa-1 such that the 
area under a N(0,1) Gaussian curve from βi  to βi+1 = 1/a (β0  and 
βa  are defined as -∞ and ∞, respectively). Table 2 shows a table 
for such breakpoints for cardinalities from 2 to 8.   

A SAX word is simply a vector of discrete symbols. We use a 
boldface letter to differentiate between a raw time series and its 
SAX version, and we denote the cardinality of the SAX word 
with a superscript:  
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SAX(T,w,a) = Ta = {t1,t2,..,tw-1,tw} 
In previous work, we represented each SAX symbol as a letter or 
integer. Here however, we will use binary numbers for reasons 
that will become apparent later. For example, in Figure 3 we have 
converted a time series T of length 16 to SAX words. Both 
examples have a word length of 4, but one has a cardinality of 4 
and the other has a cardinality of 2. We therefore have 
SAX(T,4,4) = T4 = {11,11,01,00} and SAX(T,4,2) = T2 = 
{1,1,0,0}.  

Table 2: SAX breakpoints 
a  

 βi  
2 3 4 5 6 7 8 

β1  0.00 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 
β2  0.43 0.00 -0.25 -0.43 -0.57 -0.67 
β3   0.67 0.25 0.00 -0.18 -0.32 

β4    0.84 0.43 0.18 0.00 

β5     0.97 0.57 0.32 
β6      1.07 0.67 
β7       1.15 

The astute reader will have noted that once we have T4 we can 
derive T2 simply by ignoring the trailing bits in each of the four 
symbols in the SAX word. As one can readily imagine, this is a 
recursive property. For example, if we convert T to SAX with a 
cardinality of 8, we have SAX(T,4,8) = T8 =  
{110,110,011,000}. From this, we can convert to any lower 
resolution that differs by a power of two, simply by ignoring the 
correct number of bits. Table 3 makes this clearer. 

Table 3: It is possible to obtain a reduced (by half) cardinality 
SAX word simply by ignoring trailing bits 

      SAX(T,4,16) = T16 =  {1100,1101,0110,0001} 
      SAX(T,4,8)   = T8  =  {110 ,110 ,011 ,000 } 
      SAX(T,4,4)   = T4  =  {11  ,11  ,01  ,00  } 
      SAX(T,4,2)   = T2  =  {1   ,1   ,0   ,0   } 

As we shall see later, this ability to change cardinalities on the fly 
is a useful and exploitable property.  
Given two time series T and S, their Euclidean distance is: 
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Given a SAX representation of these time series, we can define a 
lower bounding approximation to the Euclidean distance as: 
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This function requires calculating the distance between two SAX 
symbols and can be achieved with a lookup table, as in Table 4. 

Table 4: A SAX dist lookup table for a = 4 

 00 01 10 11 
00 0 0 0.67 1.34 
01 0 0 0 0.67 
10 0.67 0 0 0 
11 1.34 0.67 0 0 

The distance between two symbols can be read off by examining 
the corresponding row and column. For example, dist(00,01) = 0 
and dist(00,10) = 0.67. 
For clarity, we will give a example of how to compute the lower 
bound. Recall our running example T which appears in Figure 2. 
If we create a time series S that is simply T’s mirror image, then 
the Euclidean distance between them is D(T,S) =  46.06.  

As we have already seen, SAX(T,4,4) = T4 = {11,11,01,00}, 
and SAX(S,4,4) = S4 = {00,01,11,11}. The invocation of the 
MINDIST function will make calls to the lookup table shown in 
Table 4, obtaining: 

MINDIST(T2,S2) 2222
4

16 34.167.067.034.1 +++=  

This produces a lower bound value of 4.237. In this case, the 
lower bound is quite loose; however, having either more SAX 
symbols or a higher cardinality will produce a tighter lower 
bound. It is natural to ask how tight this lower bounding function 
can be, relative to natural competitors like PAA or DWT. This 
depends on the data itself and the cardinality of the SAX words, 
but coefficient for coefficient, it is surprisingly competitive with 
the other approaches. To see this, we can measure the tightness of 
the lower bounds, which is defined as the lower bounding 
distance over the true distance [9]. Figure 4 shows this for random 
walk time series of length 256, with eight PAA or DWT 
coefficients and SAX words also of length eight. We varied the 
cardinality of SAX from 2 to 256, whereas PAA/DWT used a 
constant 4 bytes per coefficient. The results have been averaged 
over 10,000 random walk time series comparisons.   

 
Figure 4: The tightness of lower bounds for increasing SAX 
cardinalities, compared to a PAA/DWT benchmark  

The results show that for small cardinalities the SAX lower bound 
is quite weak, but for larger cardinalities it rapidly approaches 
that of PAA/DWT. At the cardinality of 256, which take 8 bits, 
the lower bound of SAX is 98.5% that of PAA/DWT, but the 
latter requires 32 bits. This tells us that if we compare 
representations coefficient for coefficient, there is little to choose 
between them, but if we do bit-for-bit comparisons (cf. Section 5), 
SAX allows for much tighter lower bounds. This is one of the 
properties of SAX that can be exploited to allow ultra scalable 
indexing. 

3. THE iSAX REPRESENTATION  
Because it is tedious to write out binary strings, previous uses of 
SAX had integers or alphanumeric characters representing SAX 
symbols [12]. For example: 

SAX(T,4,8)  = T8 =  {110,110,011,000} = {6,6,3,0} 

However, this can make the SAX word ambiguous. If we see just 
the SAX word {6,6,3,0} we cannot be sure what the cardinality is 
(although we know it is at least 7). Since all previous uses of SAX 
always used a single “hard-coded” cardinality, this has not been 
an issue. However, the fundamental contribution of this work is to 
show that SAX allows the comparison of words with different 
cardinalities, and even different cardinalities within a single word. 
We therefore must resolve this ambiguity. We do this by writing 
the cardinality as a superscript. For example, in the example 
above: 

iSAX(T,4,8)  = T8 =  {68,68,38,08} 
Because the individual symbols are ordinal, exponentiation is not 
defined for them, so there is no confusion in using superscripts in 
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this context. Note that we are now using iSAX instead of SAX for 
reasons that will become apparent in a moment.  
We are now ready to introduce a novel idea that will allow us to 
greatly expand the utility of iSAX. 

3.1 Comparison of iSAX Words  
It is possible to compare two iSAX words of different 
cardinalities. Suppose we have two time series, T and S, which 
have been converted into iSAX words: 
     iSAX(T,4,8) = T8 = {110,110,011,000} =  {68,68,38,08} 
     iSAX(S,4,2) = S2  = {0  ,0  ,1  ,1  } =  {02,02,12,12} 
We can find the lower bound between T and S, even though the 
iSAX words that represent them are of different cardinalities. The 
trick is to promote the lower cardinality representation into the 
cardinality of the larger before giving it to the MINDIST function 
(the proof follows from [12]).   
If we think of the tentatively promoted S2 word as S8 = 
{0**1,0**2,1**3,1**4}, then the question is simply what are 
correct values of the missing **i bits?  Note that both 
cardinalities can be expressed as the power of some integer.  This 
guarantees an overlap in the breakpoints used during SAX 
computation. More concretely, if we have an iSAX cardinality of 
X, and an iSAX cardinality of 2X, then the breakpoints of the 
former are a proper subset of the latter. This is shown in Figure 3.   
Using this insight, we can obtain the missing bit values in S8 by 
examining each position and computing the bit values at the 
larger cardinality which are enclosed by the known bits at the 
current (lower) cardinality and returning the one which is closest 
in SAX space to the corresponding value in T8.   

This method obtains the S8 representation usable for MINDIST 
calculations:  

S8  = {011,011,100,100} 
It is important to note that this is not necessarily the same iSAX 
word we would have gotten if we had converted the original time 
series S. We cannot undo a lossy compression. However, using 
this iSAX word does give us an admissible lower bound. 
Finally, note that in addition to comparing iSAX words of 
different cardinalities, the promotion trick described above can be 
used to compare iSAX words where each word has mixed 
cardinalities. For example, we can allow iSAX words such as 
{111,11,101,0} =  {78,34,58,02}. If such words exist, we can 
simply align the two words in question, scan across each pair of 
corresponding symbols, and promote the symbol with lower 
cardinality to the same cardinality as the larger cardinality 
symbol. In the next section, we explain why it is useful to allow 
iSAX words with different cardinalities.  

4. iSAX INDEXING 
4.1 The Intuition Behind iSAX Indexing 
As it stands, it may appear that the classic SAX representation 
offers the potential to be indexed. We could choose a fixed 
cardinality of, say, 8 and a word length of 4, and thus have 84 
separate labels for files on disk. For instance, our running 
example T maps to {68,68,38,08}  under this scheme, and  would 
be inserted into a file that has this information encoded in its 
name. The query answering strategy would be very simple. We 
could convert the query into a SAX word with the same 
parameters, and then retrieve the file with that label from disk. 

The time series in that file are likely to be very good approximate 
matches to the query. To find the exact match, we could measure 
the distance to the best approximate match, then retrieve all files 
from disk whose label has a MINDIST value less than the value 
of the best-so-far match. Such a methodology clearly guarantees 
no false dismissals.     
This scheme has a fatal flaw, however. Suppose we have a million 
time series to index. With 4,096 possible labels, the average file 
would have 244 time series in it, a reasonable number.  However, 
this is the average. For all but the most contrived datasets we find 
a huge skew in the distribution, with more than half the files being 
empty, and the largest file containing perhaps 20% of the entire 
dataset. Either situation is undesirable for indexing, in the former 
case, if our query maps to an empty file, we would have to do 
some ad-hoc trick (perhaps trying “misspellings” of the query 
label) in order to get the first approximate answer back. In the 
latter case, if 20% of the data must be retrieved from disk, then 
we can be at most five times faster than sequential scan. Ideally, 
we would like to have a user defined threshold th, which is the 
maximum number of time series in a file, and a mapping 
technique that ensures each file has at least one and at most th 
time series in it. As we shall now see, iSAX allows us to 
guarantee exactly this. 
iSAX offers a multi-resolution, bit-aware, quantized, reduced 
representation with variable granularity. It is this variable 
granularity that allows us to solve the problem above. Imagine 
that we are in the process of building the index and have chosen 
th = 100. At some point there may be exactly 100 time series 
mapped to the iSAX word {24,34,34,24}. If, as we continue to 
build the index, we find another time series maps here, we have 
an overflow, so we split the file. The idea is to choose one iSAX 
symbol, examine an additional bit, and use its value to create two 
new files. In this case: 

Original File: {24,34,34,24} splits into: Child file 1:   {48,34,34,24} 
   Child file 2:   {58,34,34,24} 

Note that in this example we split on the first symbol, promoting 
the cardinality from 4 to 8. For some time series in the file, the 
extra bit in their first iSAX symbol was a 1, and for others it was 
a 0. In the former case, they are remapped to Child 1, and in the 
latter, remapped to Child 2. The child files can be named with 
some protocol that indicates their variable cardinality.  
The astute reader will have noticed that the intuition here is very 
similar to the classic idea of extensible hashing. This in essence is 
the intuition behind building an iSAX index, although we have 
not explained how we decide which symbol is chosen for 
promotion and some additional details. In the next sections, we 
formalize this intuition and provide details on algorithms for 
approximately and exactly searching an iSAX index. 

4.2 iSAX Index Construction  
As noted above, a set of time series represented by an iSAX word 
can be split into two mutually exclusive subsets by increasing the 
cardinality along one or more dimensions. The number of 
dimensions d and word length, w, 1 ≤ d ≤ w, provide an upper 
bound on the fan-out rate. If each increase in cardinality per 
dimension follows the assumption of iterative doubling, then the 
alignment of breakpoints contains overlaps in such a way that 
hierarchical containment is preserved between the common iSAX 
word and the set of iSAX words at the finer granularity. 
Specifically, in iterative doubling, the cardinality to be used after 
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the ith increase in granularity is in accordance with the following 
sequence, given base cardinality b: b*2i. The maximum fan-out 
rate under such an assumption is 2d. 
The use of iSAX allows for the creation of index structures that 
are hierarchical, containing non-overlapping regions [2] (unlike 
R-trees etc [6]), and a controlled fan-out rate. For concreteness, 
we depict in Figure 5 a simple tree-based index structure which 
illustrates the efficacy and scalability of indexing using iSAX.  

 
Figure 5: An illustration of an iSAX index 

The index is constructed given base cardinality b, word length w, 
and threshold th (b is optional; it can be defaulted to 2 or be set for 
evaluation to begin at higher cardinality).  The index structure 
hierarchically subdivides the SAX space, resulting in differentiation 
between time series entries until the number of entries in each 
subspace falls below th. Such a construct is implemented using a 
tree, where each node represents a subset of the SAX space such 
that this space is a superset of the SAX space formed by the union 
of its descendents. A node’s representative SAX space is congruent 
with an iSAX word and evaluation between nodes or time series is 
done through comparison of iSAX words. The three classes of 
nodes found in a tree and their respective functionality are described 
below: 
Terminal Node: A terminal node is a leaf node which contains a 

pointer to an index file on disk with raw time series entries. All 
time series in the corresponding index file are characterized by the 
terminal node’s representative iSAX word. A terminal node 
represents the coarsest granularity necessary in SAX space to 
enclose the set of contained time series entries. In the event that an 
insertion causes the number of time series to exceed th, the SAX 
space (and node) is split to provide additional differentiation.     

Internal Node: An internal node designates a split in SAX space 
and is created when the number of time series contained by a 
terminal node exceeds th. The internal node splits the SAX space 
by promotion of cardinal values along one or more dimensions as 
per the iterative doubling policy. A hash from iSAX words 
(representing subdivisions of the SAX space) to nodes is 
maintained to distinguish differentiation between entries. Time 
series from the terminal node which triggered the split are inserted 
into the newly created internal node and hashed to their respective 
locations. If the hash does not contain a matching iSAX entry, a 
new terminal node is created prior to insertion, and the hash is 
updated accordingly. For simplicity, we employ binary splits 
along a single dimension, using round robin to determine the split 
dimension.   

Root Node: The root node is representative of the complete SAX 
space and is similar in functionality to an internal node. The root 
node evaluates time series at base cardinality, that is, the 
granularity of each dimension in the reduced representation is b. 
Encountered iSAX words correspond to some terminal or internal 
node and are used to direct index functions accordingly. Un-

encountered iSAX words during inserts result in the creation of a 
terminal node and a corresponding update to the hash table. 

Pseudo-code of the insert function used for index construction is 
shown in Table 5. Given a time series to insert, we first obtain the 
iSAX word representation using the respective iSAX parameters at 
the current node (line 2). If the hash table does not yet contain an 
entry for the iSAX word, a terminal node is created to represent the 
relevant SAX space, and the time series is inserted accordingly 
(lines 22-24). Otherwise, there is an entry in the hash table, and the 
corresponding node is fetched. If this node is an internal node, we 
call its insert function recursively (line 19). If the node is a terminal 
node, occupancy is evaluated to determine if an additional insert 
warrants a split (line 7). If so, a new internal node is created, and all 
entries enclosed by the overfilled terminal node are inserted (lines 
10-16). Otherwise, there is sufficient space and the entry is simply 
added to the terminal node (line 8). 

Table 5: iSAX index insertion function 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Function Insert(ts) 
iSAX_word = iSAX(ts, this.parameters)       
                                                      
if Hash.ContainsKey(iSAX_word)                         
    node = Hash.ReturnNode(iSAX_word) 
    if node is terminal 
        if SplitNode() == false                        
            node.Insert(ts) 
        else                                           
            newnode = new internal 
            newnode.Insert(ts) 
            foreach ts in node                         
                newnode.Insert(ts)                     
            end 
            Hash.Remove(iSAX_word, node)          
            Hash.Add(iSAX_word, newnode)  
        endif 
    elseif node is internal 
        node.Insert(ts)                       
    endif 
else                                                   
    newnode = new terminal                          
    newnode.Insert(ts) 
    Hash.Add(iSAX_word, newnode) 
endif 

The deletion function is obvious and omitted for brevity.  

4.3 Approximate Search 
For many data mining applications, an approximate search may 
be all that is required. An iSAX index is able to support very fast 
approximate searches; in particular, they only require a single 
disk access. The method of approximation is derived from the 
intuition that two similar time series are often represented by the 
same iSAX word. Given this assumption, the approximate result 
is obtained by attempting to find a terminal node in the index with 
the same iSAX representation as the query. This is done by 
traversing the index in accordance with split policies and 
matching iSAX representations at each internal node. Because the 
index is hierarchical and without overlap, if such a terminal node 
exists, it is promptly identified. Upon reaching this terminal node, 
the index file pointed to by the node is fetched and returned. This 
file will contain at least 1 and at most th time series in it. A main 
memory sequential scan over these time series gives the 
approximate search result.   
In the (very) rare case that a matching terminal node does not 
exist, such a traversal will fail at an internal node. We mitigate the 
effects of non-matches by proceeding down the tree, selecting 
nodes whose last split dimension has a matching iSAX value with 
the query time series. If no such node exists at a given junction, 
we simply select the first, and continue the descent.  

{0*,0*,1*}   [0*,1*,1*]   [0*,1*,0*]   

root 

{00,1*,1*}   [01,1*,1*]   

{01,11,1*}   [01,10,1*]   

{01,10,10}   {01,10,11}   

Internal nodes 

Terminal nodes 
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4.4 Exact Search 
Obtaining the exact nearest neighbor to a query is both 
computationally and I/O intensive. To improve search speed, we 
use a combination of approximate search and lower bounding 
distance functions to reduce the search space. The algorithm for 
obtaining the nearest neighbor is presented as pseudo-code in 
Table 6.   
The algorithm begins by obtaining an approximate best-so-far 
(BSF) answer, using approximate search as described in Section 
4.3 (lines 2-3). The intuition is that by quickly obtaining an entry 
which is a close approximation and with small distance to the 
nearest neighbor, large sections of the search space can be pruned. 
Once a baseline BSF is obtained, a priority queue is created to 
examine nodes whose distance is potentially less than the BSF. 
This priority queue is first initialized with the root node (line 6).   
Because the query time series is available to us, we are free to use 
its PAA representation to obtain a tighter bound than the 
MINDIST between two iSAX words. More concretely, the 
distance used for priority queue ordering of nodes is computed 
using MINDIST_PAA_iSAX, between the PAA representation of 
the query time series and the iSAX representation of the SAX 
space occupied by a node. 
Given the PAA representation, TPAA of a time series T and the 
iSAX representation, SiSAX of a time series S, such that |TPAA| = 
|SiSAX| = w, |T| = |S| = n, and recalling that the jth cardinal value of 
SiSAX derives from a PAA value, v between two breakpoints βL, 
βU, βL < v ≤ βU, 1 ≤ j ≤ w we define the lower bounding distance 
as:   

MINDIST_PAA_iSAX(TPAA, SiSAX) = ( )
( )∑ =
⎪
⎩

⎪
⎨

⎧

<−
>−

w

i PAAiUiPAAiUi

PAAiLiPAAiLi

w
n
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TifT
TifT

1
2

2

0
ββ
ββ  

Recall that we use distance functions that lower bound the true 
Euclidean distance. That is, if the BSF distance is less than or 
equal to the minimum distance from the query to a node, we can 
discard the node and all descendants from the search space 
without examining their contents or introducing any false 
dismissals. 
The algorithm then repeatedly extracts the node with the smallest 
distance value from the priority queue, terminating when either 
the priority queue becomes empty or an early termination 
condition is met. Early termination occurs when the lower bound 
distance we compute equals or exceeds the distance of the BSF. 
This implies that the remaining entries in the queue cannot qualify 
as the nearest neighbor and can be discarded.   
If the early termination condition is not met (line 10), the node is 
further evaluated. In the case that the node is a terminal node, we 
fetch the index file from disk and compute the distance from the 
query to each entry in the index file, recording the minimum 
distance (line 14). If this distance is less than our BSF, we update 
the BSF (lines 16-17).   
In the case that the node is an internal node or the root node, its 
immediate descendents are inserted into the priority queue (lines 
20-23). The algorithm then repeats by extracting the next 
minimum node from the priority queue. 
Before leaving this section, we note that we have only discussed 
1NN queries. Extensions to KNN and range queries are trivial and 
obvious, and are omitted for brevity.   

Table 6: Expediting exact search using approximate search and 
lower bounding distance functions 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Function [IndexFile] = ExactSearch(ts) 
BSF.IndexFile = ApproximateSearch(ts) 
BSF.dist = IndexFileDist(ts, BSF.IndexFile)  
 
PriorityQueue pq 
pq.Add(root) 
 
while !pq.IsEmpty 
    min = pq.ExtractMin() 
    if min.dist >= BSF.dist  
        break                          
    endif 
    if min is terminal 
        tmp = IndexFileDist(ts, min.IndexFile) 
        if BSF.dist > tmp 
            BSF.dist = tmp 
            BSF.IndexFile = min.IndexFile 
        endif 
    elseif min is internal or root 
        foreach node in min.children 
            node.dist = MINDIST_PAA_iSAX(ts,node.iSAX) 
            pq.Add(node) 
        end 
    endif 
end 
return BSF.IndexFile 

5. EXPERIMENTS 
We begin by discussing our experimental philosophy. We have 
designed all experiments such that they are not only reproducible, 
but easily reproducible. To this end, we have built a webpage 
which contains all the datasets used in this work, together with 
spreadsheets which contain the raw numbers displayed in all the 
figures [10]. In addition, the webpage contains many additional 
experiments which we could not fit into this work; however, we 
note that this paper is completely self-contained.  
Experiments are conducted on an AMD Athlon 64 X2 5600+ with 
3GB of memory, Windows XP SP2 with /3GB switch enabled, 
and using version 2.0 of the .NET Framework. All experiments 
used a 400GB Seagate Barracuda 7200.10 hard disk drive with 
the exception of the 100M random walk experiment, which  
required more space, there we used a 750GB Hitachi Deskstar 
7K10000.  

5.1 Tightness of Lower Bounds 
It is important to note that the rivals to iSAX are other time series 
representations, not indexing structures such as R-Trees, VP-
Trees etc. We therefore begin with a simple experiment to 
compare the tightness of lower bounds of iSAX with the other 
lower bounding time series representations, including DFT, DWT, 
DCT, PAA, CHEB, APCA and IPLA. We measure TLB, the 
tightness of lower bounds [9]. This is calculated as: 

       TLB = LowerBoundDist(T,S) / TrueEuclideanDist(T,S) 
Because DWT and PAA have exactly the same TLB [9] we show 
one graphic for both. We randomly sample T and S (with 
replacement) 1,000 times for each combination of parameters. We 
vary the time series length [480, 960, 1440, 1920] and the number 
of bytes per time series available to the dimensionality reduction 
approach [16, 24, 32, 40]. We assume that each real valued 
representation requires 4 bytes per coefficient, thus they use [4, 6, 
8, 10] coefficients. For iSAX, we hard code the cardinality to 256, 
resulting in [16, 24, 32, 40] symbols per word.   
Recall that, for TLB, larger values are better. If the value of TLB 
is zero, then any indexing technique is condemned to retrieving 
every object from the disk. If the value of TLB is one, then there 
is no search, we could simply retrieve one object from disk and 
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guarantee that we had the true nearest neighbor. Figure 6 shows 
the result of one such experiment with an ECG dataset. 

 
Figure 6: The tightness of lower bounds for various time series 
representations on the Koski ECG dataset. Similar graphs for 
thirty additional datasets can be found at [10] 

Note that the speedup obtained is generally non-linear in TLB, 
that is to say if one representation has a lower bound that is twice 
as large as another, we can usually expect a much greater than 
two-fold decrease in disk accesses. 
In a sense, it may be obvious before doing this experiment that 
iSAX will have a smaller reconstruction error, thus a tighter lower 
bound, and greater indexing efficiency than the real valued 
competitors. This is because iSAX is taking advantage of every 
bit given to it. In contrast, for the real valued approaches it is 
clear that the less significant bits contribute much less information 
than the significant bits. If the raw time series is represented with 
4 bytes per data point, then each real valued coefficient must also 
have 4 bytes (recall that orthonormal transforms are merely 
rotations in space). This begs the question, why not quantize or 
truncate the real valued coefficients to save space? In fact, this is 
a very common idea in compression of time series data. For 
example, in the medical domain it is frequently done for both the 
wavelet [5] and cosine [3] representations. However, recall that 
we are not interested in compression per se. Our interest is in 
dimensionality reduction that allows indexing with no false 
dismissals. If, for the other approaches, we save space by 
truncating the less significant bits, then at least under the IEEE 
Standard for Binary Floating-Point Arithmetic (IEEE 754) default 
policy for rounding (RoundtoNearest) it is possible the distance 
between two objects can increase, thus violating the no false 
dismissals guarantee.  

 
Figure 7:  The experiment in the previous figure redone with the 
iSAX word length equal to the dimensionality of the real valued 
applications (just DCT is shown to allow a “zoom in”) 

We have no doubt that an indexable bit-adjustable version of the 
real valued representations could be made to work, however, none 
exists to date. Even if we naively coded each iSAX word with the 
same precision as the real valued approaches (thus wasting 75% 
of the main memory space), iSAX is still competitive with the 
other approaches; this is shown in Figure 7. Before leaving this 
section, we note that we have repeated these experiments with 
thirty additional datasets from very diverse domains with 
essentially the same results [10].  

5.2 Indexing Massive Datasets 
We tested the accuracy of approximate search for increasingly 
large random walk databases of sequence length 256, containing 
[one, two, four, eight] million time series. We used b = 4, w = 8, 
and th = 100. This created [39,255, 57,365, 92,209, 162,340] files 
on disk. We generated 1,000 queries, did an approximate search, 
and then compared the results with the true ranking which we 
later obtained with a sequential scan. Figure 8 shows the results. 

 
Figure 8: The percentage of cutoffs for various rankings, for 
increasingly large databases with approximate search 

The figure tells us that when searching one million time series, 
91.5% of the time approximate search returns an answer that 
would rank in the top 100 of the true nearest neighbor list. 
Furthermore, that percentage only slightly decreases as we scale 
to eight million time series. Likewise, again, for one million 
objects, more than half the time the approximate searches return 
an object that would rank in the top 10, and 14% of the time it 
returns the true nearest neighbor. Recall that these searches 
require exactly one disk access and at most 100 Euclidean 
distance calculations, so the average time for a query was less 
than a second. 
We also conducted exact search experiments on 10% of the 
queries.  For our four different sized datasets, exact search 
required an average of [2115.3, 3172.5, 4925.3, 7719.1] disk 
accesses and finished in an average time of [3.8, 5.8, 9.0, 14.1] 
minutes, in contrast to sequential scan, which took [71.5, 104.8, 
168.8, 297.6] minutes. 
To push the limits of indexing, we considered indexing 
100,000,000 random walk time series of length 256. To the best 
of our knowledge, this is as least two orders of magnitude larger 
that any other dataset considered in the literature [2][4][6][13]. 
Since the publication of Don Quixote de la Mancha in the 17th 
century, the idiom, “a needle in a haystack” has been used to 
signify a near impossible search. If each time series in this 
experiment was represented by a piece of hay the size of a 
drinking straw, they would form a cube shaped haystack with 262 
meter sides. 
Because of the larger size of data, we increased th to 2,000, and 
used w of 16. This created 151,902 files occupying a half terabyte 
of disk space. The average occupancy of index files is 
approximately 658.  
We issued ten new random walk approximate search queries. 
Each query was answered in an average of 1.15 seconds. To find 
out how good each answer was, we did a linear scan of the data to 
find the true rankings of the answers. Three of the queries did 
actually discover their true nearest neighbor, the average rank was 
8, and the worst query “only” managed to retrieve its 25th nearest 
neighbor. In retrospect, these results are extraordinarily 
impressive. Faced with one hundred million objects on disk, we 
can retrieve only 0.0013895% of the data and find an object that 
is ranked the top 0.0001%. As we shall see in Sections 5.3/5.4, the 
extraordinary precision and speed of approximate search 
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combined with fast exact search allows us to consider mining 
datasets with millions of objects.  
We also conducted exact searches on this dataset; each search 
took an average of 90 minutes to complete, in contrast to a linear 
scan taking 1,800 minutes.  

5.3 Time Series Set Difference 
In this section, we give an example of a data mining algorithm 
that can be built on top of our existing indexing algorithms. The 
algorithm is interesting in that it uses both approximate search 
and exact search to compute the ultimate (exact) answer to a 
problem. 
Suppose we are interested in contrasting two collections of time 
series data. For example, we may be interested in contrasting 
telemetry from the last Shuttle launch with telemetry from all 
previous launches, or we may wish to contrast the ten minutes of 
electrocardiograms just before a patient wakes up with the 
preceding seven hours of sleep.  
To do this, we define the Time Series Set Difference (TSSD): 

Definition: Time Series Set Difference(A,B). Given two 
collections of time series A and B, the time series set 
difference is the subsequence in A whose distance from its 
nearest neighbor in B is maximal. 

Note that we are not claiming that this is the best way to contrast 
two time series; it is merely a sensible definition we can use as a 
starting point.  
We tested this definition on an electrocardiogram dataset. The 
data is an overnight polysomnogram with simultaneous three-
channel Holter ECG from a 45 year old male subject with 
suspected sleep-disordered breathing. We used the first 7.2 hours 
of the data as the reference set B, and the next 8 minutes 39 
seconds as the “novel” set A. The set A corresponds to the period 
in which the subject woke up. After indexing the data with an 
iSAX word length of 9 and a maximum threshold value of 100, 
we had 1,000,000 time series subsequences in 31,196 files on 
disk, occupying approximately 4.91GB of secondary storage. 
Figure 9 show the TSSD discovered.  

 
Figure 9: The Time Series Set Difference discovered between ECGs 
recorded during a waking cycle and the previous 7.2 hours  

We showed the result to UCLA cardiologist Helga Van Herle. 
She noted that the p-waves in each of the full heartbeats look the 
same, but there is a 21.1% increase in the length of the second 
one. This indicated to her that this is almost certainly an example 
of sinus arrhythmia, where the R-R intervals are changing with 
the patients breathing pattern. This is likely due to slowing of the 
heart rate with expiration and increase of the heart rate with 
inspiration, given that it is well known that respiration patterns 
change in conjunction with changes in sleep stages. 
An obvious naive algorithm to find the TSSD is to do 20,000 
exact searches, one for each object in A. This requires (“only”) 
325,604,200 Euclidean distance calculations, but it requires 
approximately 5,676,400 disk accesses, for 1.04 days of wall 
clock time. This is clearly untenable. 

We propose a simple algorithm to find the TSSD that exploits the 
fact that we can do both ultra fast approximate search and fast 
exact search. We assume that set B is indexed and that set A is in 
main memory. The algorithm is sketched out in Table 7. 

Table 7: An outline of an algorithm to find the TSSD 
For each time series in A, find its approximate NN in B 

Place each time series in a priority queue sorted by 
its NN distance in descending order. 

BEGIN 

Remove the time series at the head of the queue. 
Begin an exact search for its nearest neighbor. 

If at any point during this search the best-so-far 
value becomes less than the value at the top of the 
priority queue, reinsert the time series back into 
the priority queue with the best-so-far value as the 
key, then goto BEGIN. 

Otherwise we must have found the true nearest 
neighbor and its distance is greater than the top of 
the priority queue, so we have the true TSSD. Report 
success. 

To find the discordant heartbeats shown in Figure 9, our 
algorithm did 43,779 disk accesses (20,000 in the first 
approximate stage, and the remainder during the refinement 
search phase), and performed 2,365,553 Euclidean distance 
calculations. The number of disk accesses for a sequential scan 
algorithm is somewhat better; it requires only 31,196 disk reads, 
about 71% of what our algorithm required. However, sequential 
scan requires 20,000,000,000 Euclidean distance calculations, 
which is 8,454 times greater than our approach and would require 
an estimated 6.25 days to complete. In contrast, our algorithm 
takes only 34 minutes.  
Our algorithm is much faster because it exploits the fact that that 
most candidates in set A can be quickly eliminated by very fast 
approximate searches. In fact, of the 20,000 objects in set A for 
this experiment, only two of them (obviously including the 
eventual answer) had their true nearest neighbor calculated. Of 
the remainder, 17,772 were eliminated based only on the single 
disk access made in phase one of the algorithm, and 2,226 
required more than one disk access, but less than a compete 
nearest neighbor search. 

5.4 Batch Nearest Neighbor Search 
We consider another problem which can be exactly solved with a 
combination of approximate and exact search. The problem is that 
of batch nearest neighbor search. We begin with a concrete 
example of the problem before showing our iSAX-based solution. 
Here the context of DNA is used to provide a real world dataset 
with results which can be easily verified.   
It has long been known that all the great apes except humans have 
24 chromosomes. Humans, having 23, are quite literally the odd 
man out. This is widely accepted to be a result of an end-to-end 
fusion of two ancestral chromosomes. Suppose we do not know 
which of the ancestral chromosomes were involved in the fusion, 
we could attempt to efficiently discover this with iSAX.  
We begin by converting DNA into time series, using the approach 
shown in Table 8.  

We converted Contig NT_005334.15 of the human chromosome 2 
to time series in this manner, and then indexed all subsequences 
of length 1024 using a sliding window. There are a total of 
11,246,491 base pairs and a total of 5,622,734 time series 
subsequences written to disk.  
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Table 8: An algorithm for converting DNA to time series 
T1 = 0; 
For i = 1 to length(DNAstring) 

If  DNAstringi = A, then Ti+1 = Ti + 2 
If  DNAstringi = G, then Ti+1 = Ti + 1 
If  DNAstringi = C, then Ti+1 = Ti - 1 
If  DNAstringi = T, then Ti+1 = Ti - 2 

End 
We converted 43 randomly chosen subsequences of length 1024 
of chimpanzee’s (Pan troglodytes) DNA in the same manner. We 
made sure that the 43 samples included at least one sample from 
each of the chimps 24 chromosomes. 
We performed a search to find the chimp subsequence that had 
the nearest nearest-neighbor in the human reference set.  Figure 
10 shows the two subsequences plotted together. Note that while 
the original DNA strings are very similar, they are not identical. 

 
Figure 10: Corresponding sections of human and chimpanzee DNA 

Once again, this is a problem where a combination of exact and 
approximate search can be useful. To speed up the search we use 
batch nearest neighbor search. We define this as the search for 
the object O in a (relatively small) set A, which has the smallest 
nearest neighbor distance to an object in a larger set B. Note that 
to solve this problem, we really only need one exact distance, for 
object O, to be known. For the remaining objects in A, it suffices 
to know that a lower bound on their nearest neighbors is greater 
than the distance from O to its nearest neighbor. With this in 
mind, we can define an algorithm which is generally much faster 
than performing exact search for each of the objects in A. Table 9 
outlines the algorithm. 

Table 9: Batch Nearest Neighbor Algorithm 
For each time series in A, find its approximate NN in B 
and record the object O, with the smallest approximate 
distance. 

Do an exact search for its nearest neighbor using 
ExactSearch(O) (cf Table 6). Record the distance as 
O.dist 
End 
For all remaining objects in A 

Perform ExactSearch(ts), as in Table 6 but change 
lines 2-3 such that BSF.dist is initialized to 
O.dist 
 
If ExactSearch terminates with null, then this 
object can not be closer to its nearest neighbor 
than O. 
Else This object Onew was closer to its nearest 
neighbor than O. So O = Onew 

End 
We can see this algorithm as an anytime algorithm [16]. After the 
first phase, our algorithm has an approximate answer that we can 
examine. As the algorithm continues working in the background 
to confirm or adjust that answer, we can evaluate the current 
answer and make a determination of whether to terminate or allow 
the algorithm to persist. 

In this particular experiment, the first phase of the algorithm 
returns an answer (which we later confirm to be the exact 
solution) in just 12.8 seconds, finding that the randomly chosen 
substring of chimp chromosome 2A, beginning at 7,582 of Contig 
NW_001231255 is a stunningly close match to the substring 
beginning at 999,645 of the Contig NT_005334.15 of human 
chromosome 2. The full algorithm terminates in 21.8 minutes. In 
contrast, a naive sequential scan takes 13.54 hours.  

6. CONCLUSIONS  
We introduced iSAX, a representation that supports indexing of 
massive datasets, and have shown it can index up to one hundred 
million time series. We have also provided examples of 
algorithms that use a combination of approximate and exact 
search to ultimately produce exact results on massive datasets. 
Other time series data mining algorithms such as motif discovery, 
density estimation, discord discovery, and clustering can similarly 
take advantage of combining both types of search. We plan to 
consider such problems in future work.   
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