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Abstract.4
Macroscopic flows of filament-motor mixtures, driven by the hydrolysis of ATP, are important5

to many cellular processes such as cytoplasmic streaming in Drosophila oocytes and cortical flow6
in the first cell division of C. elegans. Gliding assays, reduced in vitro model systems where motor7
proteins adsorbed onto a planar substrate bind to and move filaments, recreate large-scale dynamic8
patterns like coherent swarming motion and density waves. These systems are sensitive to the9
microscopic behavior such as the motor protein binding and unbinding dynamics, which take place10
on a faster timescale than the direct and fluid-mediated filament interactions. In this work, we present11
a multiscale modeling and simulation framework for gliding assays that allows detailed microscopic12
motor modeling as well as both steric and hydrodynamic interactions between filaments. Our model13
is based on continuum kinetic theory, and our implementation utilizes CPU and GPU parallelism14
to track the sparse but high-dimensional state space arising from the microscopic motor protein15
configurations. We find that steric interactions play a role in the formation of spatiotemporally16
coherent flow structures, and qualitatively reproduce experimentally observed behaviors including17
filament crossover and alignment, and clump formation, merging, and splitting.18

Key words. micro-macro methods, multiscale simulation, gliding assay, cytoskeleton, motor19
proteins, active suspensions, hydrodynamics, solid-fluid coupling, steric interactions, heterogenous20
computing, emergent phenomena21

AMS subject classifications. 76Z99, 76M20, 76M22, 92C05, 65C20, 68U20, 65Y0522

1. Introduction. Actin and tubulin filaments working in concert with motor23

proteins play a central role in cell functions including mitosis and pronuclear cen-24

tering [31]. Gliding assays, in which stabilized filaments are propelled by anchored25

motor proteins powered by the hydrolysis of ATP in a thin quasi-two-dimensional26

chamber, are commonly used to study the behavior of these cellular components in27

vitro (Figure 1). Large-scale pattern formation is observed in such experiments, in-28

cluding clump formation, merging, and splitting, and density waves [29], and the29

emergence of a lattice of microtubule vortices [32].30

The physics of the filament-motor-fluid system are inherently multiscale in space31

and time, with nanoscale motors with fast binding/unbinding kinetics coupled to mi-32

croscale filaments interacting in a macroscopic fluid domain. These systems have been33

studied with a variety of theoretical and computational approaches. Models that track34

explicit representations of filaments with Langevin dynamics underscore the sensitivity35

of the system to the motor behavior; [15, 14] included a load-dependent force-velocity36

relationship of motor proteins in a gliding assay and found that the motor activity37

increases nematic ordering, and [19, 22, 20] found that the time spent by individual38

motors at the end of a microtubule before falling off plays a central role in the emer-39

gence of coherent structures. These models neglect fluid-mediated filament-filament40
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interactions, and are therefore not suitable to address such behaviors. Moreover, the41

computations have scaled to only hundreds of filaments, while many systems of inter-42

est such as a mitotic spindle are estimated to have tens or hundreds of thousands of43

filaments. A model based on macroscopic configuration fields, and thus more suitable44

to a large system and large length and time scales, was proposed by [16]. This was45

expanded upon by [27] in a hydrodynamic theory incorporating explicit tracking of46

bound and unbound motor populations. Both [27, 16] rely on phenomenologically47

motivated constitutive equations in the model derivation and neglect filament density48

fluctuations. Another class of modeling approaches starts with a microscopic model49

and coarse-grains the system to attain a macroscopic description [18, 33, 1]. For ex-50

ample, [18] assume a constant motor density and demonstrate that inhomogeneities51

in motor stepping rate are necessary to drive bundle formations, and [33], without52

considering fluctuations in motors or filament densities, show that the order of the53

isotropic-nematic transition depends on the force-dependent motor detachment. How-54

ever, both of [33, 1] neglect fluid-mediated filament-filament interactions, although55

they could be coupled to the fluid equation using a configurational average of an ex-56

pression involving the distribution function to include the contribution of the particles57

to the fluid stress [4, 3]. This approach has been widely applied to nanorods [34], and58

more recently to active gels [17] and to suspensions of active swimmers [25, 26], and59

was used in our previous work [11]. Such methods have the benefit of flexibly allowing60

detailed microscopic modeling. However, it is not always possible to avoid tracking61

the microscopic variables, which can incur significant computational cost.62

As shown experimentally by, among others, [29, 14, 32], the filament density and63

steric interactions play a critical role in the formation of coherent structures. In this64

paper we consider dense suspensions of filaments, and build upon our previous model65

[11] to include steric interactions between filaments. A widespread model of steric66

interaction is the excluded volume potential [4]. This model, widely used in liquid67

crystal theory [34, 18], has been adapted to active suspensions of self-propelled pushers68

and pullers in three dimensions [7]. The latter includes a rotational steric alignment69

term, but neglects the linear steric contribution which can prevent unphysical “piling70

up” amongst the microtubules in a gliding assay. We follow this approach to modeling71

steric interactions, including both rotational and linear steric interaction terms.72

Characterizing the interplay of steric versus hydrodynamic effects requires an ex-73

ploration of different filament densities and motor systems. At a microtubule density74

of .05µm−2, Sumino et al. [32] are able to model their experimentally observed vortex75

lattice with a phenomenological agent-based method neglecting hydrodynamics. In76

contrast, at actomyosin surface densities ranging between 2µm−2 to 21µm−2, Schaller77

et al. [29] demonstrate filament clump and density wave persistence and scale that78

cannot be explained through purely steric interactions. Additionally, Schaller et al.79

[28] demonstrate evidence of hydrodynamic effects in the formation of depletion layers80

between clump-clump or clump-wall collisions that cause reorientation before physical81

contact. The particulars of the microscopic motors may also significantly influence82

the collective motion. For example, [32] reports that using kinesin motor proteins83

instead of dynein results in a higher rate of microtubule crossover events, limiting84

steric interactions and preventing the formation of the vortex lattice. The impor-85

tance of fluid effects can also be seen futher in the theoretical study of filaments in a86

quasi-two-dimensional chamber [10].87

In this work, we present a novel micro-macro model and computational framework88

to simulate both steric and hydrodynamic interactions in a microtubule gliding assay.89

Our new framework supports different motor protein activity models, as well as the90
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MICRO-MACRO FRAMEWORK FOR GLIDING ASSAYS 3

option to treat the filaments as self-propelled. Rather than use phenomenological91

steric interaction rules, we model fluid stresses due to microtubule inextensibility,92

rotational and translational steric interactions, and self-propulsion if applicable.93

We base our approach on our previous work [11], where we developed a contin-94

uum model coupling the motion of the fluid to the motion of the motors and micro-95

tubules. In that work, we used closure approximations to reduce the fluid equations96

to depth-averaged two-dimensional equations, and restricted ourselves to the dilute97

limit, ignoring steric interactions. Here, we solve the fluid equations in three dimen-98

sions and avoid making closure approximations. As in [11], we track distributions99

of microtubules and kinesin motor proteins, with behavior governed by conservation100

equations.101

The paper is organized as follows. Our framework is presented in Section 2, the102

implementation and numerical methods are presented in Section 3, simulation results103

are presented in Section 4, and we conclude in Section 5.104

2. Modeling framework.105

This section reviews the setup of a gliding motility assay, describes our continuous106

representation, and details the individual components of our modeling framework.107

Two distributions are tracked: one for the microtubules, and one for the bound mo-108

tors. Each distribution satisfies a conservation equation. We present one such equa-109

tion for the microtubule distribution taking into account hydrodynamic and steric110

effects, and two for the bound motor distribution. Bulk fluid forces and steric stresses111

are calculated from the bound motor proteins and the microtubule distribution re-112

spectively, and included in the fluid equations.113

2.1. Microscale model.114

Figure 1 illustrates the experimental setup. A microtubule gliding assay consists115

of two plates separated by a small distance. A fluid fills the gap, with fluid flow116

characterized by low Reynolds number. Motor proteins (kinesin in our case) are117

anchored to the bottom plate with their heads free to bind to microtubules, walk118

along them, and detach. The microtubules, in turn, glide along the motor protein119

heads, effectively constrained within a single plane. They are stabilized to prevent120

growth or depolymerization, and have an orientation defined in terms of a plus and121

minus end. Upon binding, kinesin motor proteins walk towards the plus end of the122

microtubule, propelling the microtubule in the direction of its minus end. We assume123

ATP saturation so the motor proteins are continuously active. We refer the reader to124

[11] for a list of values of physical parameters found in the literature.125

Fig. 1: Microtubule gliding assay setup. Motor protein (black) tails are anchored to
a fixed plate, while their heads bind and pull microtubules (green).
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2.1.1. Microtubule distribution. In this model, we assume that the micro-126

tubules of length 2l and diameter b are inextensible and rigid, an appropriate ap-127

proxmiation for microtubules of l ≤ 2µm [30]. We describe the microtubules by the128

position of their center-of-mass x and a vector p pointed towards their plus end.129

Let Ψ(x,p, t) be the microtubule distribution function. Ψ evolves according to the130

Smoluchowski equation (see also [12, 11])131

∂tΨ +∇x · (ẋΨ) +∇p · (ṗΨ) = 0(1)132

ẋ2 = −Vspp2 + u2(x)−∇x2
Ut −Dt,||∇x2

ln Ψ,(2)133

ż = w(x)− ∂zUt −Dt,⊥∂z ln Ψ(3)134

ṗ = (I− pp)∇xu(x)p−∇pUr −Dr∇p ln Ψ.(4)135136

Here the subscript 2 denotes the in-plane x, y components and derivatives with respect
to these variables. The first two and last terms in the equations for ẋ = (ẋ2 ż)

T and
ṗ are similar to those of the active bacteria swimming model of [26]. Vsp is a propul-
sion velocity, analogous to the self-propulsion term in active swimmer models. Since
microtubules do not propel themselves through the fluid as a bacteria does [28], but
are propelled by motors, the resulting force should act like a monopole (see Eqs. (15)-
(16)), similar to sedimenting particles [5]. Therefore, we include both a self-propulsion
velocity and a passive force in our model. Furthermore, u(x) = (u2(x)w(x))T is the
velocity of the surrounding fluid at x with which the microtubules are advected. Be-
cause the kinesin motors walk towards the plus end, i.e. in the direction of p, the
microtubule will move in the direction −p2 in the plane of motion where it is re-
stricted. Dt,||, Dt,⊥ and Dr are the translational and rotational diffusion coefficients,
respectively. Because of the channel geometry and the experimental observation that
microtubules move in a z-plane, we expect Dt,⊥, the diffusion in the z direction, to
be smaller than the in-plane diffusion Dt,||. We use zero diffusion in all of our ex-
amples. We do not include thermal fluctuations in the present model. The third
term in ẋ2 and ṗ and the second term in ż describes the effect of steric interactions
through a translational and rotational potential, Ut/r, respectively. We model the
steric potential using the Maier-Saupe potential Kt/r(p,p

′) = −U0
t/r(p · p

′)2 with

Ut/r(x,p, t) =

∫
Ψ(x,p′, t)Kt/r(p,p

′)dp′.

The above form of Ur is identical to the one proposed by [7] for active suspension, but137

we also keep the translational steric potential Ur from [18] to prevent interpenetration138

in the plane of the microtubules. With the previous definitions of the steric potential139

the translational and rotational fluxes become140

ẋ2 = −Vspp2 + u2(x) + U0
t,‖pp : ∇2D(x, t)−Dt,||∇2 ln Ψ(5)141

ż = w(x) + U0
t,⊥pp : ∂zD(x, t)−Dt,⊥∂z ln Ψ(6)142

ṗ = (I− pp)(∇xu(x) + 2U0
rD(x, t))p−Dr∇p ln Ψ,(7)143144

where D(x, t) =
∫

Ψ(x,p, t)ppdp is the second moment of Ψ with respect to p. The145

total number of microtubules is given by N =
∫∫

Ψdxdp.146

2.1.2. Motor distributions. In general, the free and bound motor populations147

evolve according to a reaction-diffusion-advection equation. In a gliding assay, motor148

tails are fixed to a plate and cannot diffuse or advect with the flow. Hence, we consider149
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only the conversion between the free and bound populations, and the advection and150

procession of the bound motor heads. We represent the free motor density asMf (r0),151

the density of motors with free heads and tails anchored at position r0. We do not152

track the position of free motor heads. We represent the bound motor density per mi-153

crotubule asMb(r0, s|(x,p), t), with r0 the position where the motor tail is anchored,154

x, s,p the center of mass, arclength parameter, and orientation of the microtubule155

the motor head is bound to, and t the time. The notation |(x,p) denotes that the156

probability is conditional on the distribution of microtubules Ψ(x,p, t). Finally, we157

let M(r0) be the total (bound + free) motor density at r0. We define the free motor158

density Mf as159

Mf (r0, t) =M(r0)−
∫∫∫

Mb(r0, s|(x,p), t)Ψ(x,p, t)ds dx dp,(8)160
161

that is, for every motor with tail anchored at r0 the head is either free or bound. The162

total number of bound motors is given by Nb =
∫∫∫∫

MbΨdr0dxdpds. In the entire163

system, the total number of motors Nm = Nf +Nb is constant.164

The possible configurations of bound motor heads face constraints. First, a head165

detaches if it walks off the plus end of the microtubule (|s| > l). Second, the motor166

head detaches due to stretching of the motor stalk, which happens beyond a critical167

distance rc. We do not model the spring force of the motor stalk extension. We168

enforce these two constraints by requiring thatMb is zero when |s| > l and by taking169

Mb to be zero when |x + sp− r0| ≥ rc. Equivalently, the second condition says that170

for a given tail r0 there is only a small subset of x+sp available for attachment. This171

crucial locality restriction effectively reduces the dimensionality ofMb. We represent172

the allowable local configurations as a ball of radius rc illustrated in Figure 2,173

Brc(r0) = {(x′, s′,p′) : |x′ + s′p′ − r0| < rc}.(9)174175

Fig. 2: Set Brc(r0) of microtubule
segments accessible to motor head
for motor tail anchored at r0 in
solid green (illustrated in 2D for
clarity).

We consider two equations for the bound mo-176

tor distribution. The first, hereafter referred to177

as the “evolved” model, tracks Mb through the178

evolution of a full conservation equation. It mod-179

els motor head stepping along microtubules as180

well as attachment proportional to the available181

number and length of microtubules and detach-182

ment. Since motors bind and unbind quickly rel-183

ative to the speed of the microtubules, this con-184

servation equation has its own smaller timescale.185

The second model, hereafter referred to as the186

“simplified” model, assumes that motors bind to187

any reachable position s along a microtubule with188

equal probability, and that the distribution of189

bound motors MbΨ with tails anchored at r0190

is proportional to the density of microtubules to191

bind to up until all available motors are bound. The fidelity of the smaller timescale192

behavior from the evolved motor model is lost. Instead of solving a conservation193

equation at a separate timescale, Mb is updated from Ψ on its timescale.194

In the evolved motor model, following [21], the number of binding events per195

second is proportional to the local density of free motors times the available length of196

microtubules (as an approximation for the available binding sites) with the constant197
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6 S. C. COOK, C. HOHENEGGER, AND T. SHINAR

of proportionality, denoted by kon, that has units of µm2s−1. Defining B̄(r0) =198 ∫∫∫
Brc

ΨMbdsdxdp, then B̄(r0) represents the number of bound motors in Brc per199

unit area. Since B̄ and Mf have units of number per unit area (and not per unit200

volume), we divide kon by the capture radius rc to obtain a constant of proportionality201

that has units of µm s−1, before repeating the argument of [21] for B̄. In order to202

convert from a number per area to a number, we multiply B̄(r0)by the area of the203

disk Drc of radius rc centered at r0. Therefore, after dividing through by |Drc | and204

neglecting advection terms, we have a relationship of the form205

∂tB̄ = −koffB̄ +
kon

rc|Drc |
Mf

∫∫∫
Brc

Ψdxdpds,206

where the integral of Ψ over Brc represents the total length of available microtubules207

and koff (units of s−1) is the detachment rate. Setting kon = kon/(rc|Drc |) with units208

of (µms)−1 and including advection terms, the conservation equation for MbΨ is209

∂t(MbΨ) + ∂s(VmMbΨ) +∇x · (ẋMbΨ) +∇p · (ṗMbΨ)

= konΨMf1Brc (r0) − koffMbΨ.
(10)210

Here 1Brc
(r0) is the indicator function for Brc(r0). The flux terms on the left hand211

side express the procession of the motor along the microtubule with speed Vm and212

the motion of the motor-microtubule complex with the background flow. The source213

terms on the right hand side express the attachment of a free motor at s to the214

microtubule x,p at a rate per length kon, and the detachment of a bound motor at a215

rate koff. Using Eq. (1) to eliminate Ψ, Eq. (10) simplifies to216

[∂tMb + ∂s(VmMb) + ẋ · ∇xMb + ṗ · ∇pMb] Ψ = konMfΨ1Brc
− koffMbΨ.(11)217

We note that if Ψ 6= 0 for all (x,p, t) we can divide by Ψ, but we will refrain from218

doing so until Section 2.2.219

In this paper, we also consider a simplified heuristic motor model where all motor220

heads are located in the same plane at height z0 and the number of bound motors221

is proportional to the number of microtubules available within the binding range.222

Therefore, we let Mb be the piecewise function223

(12) Mb(r0, s|(x,p), t) =

0 if |x + sp− r0| ≥ rc

min

(
C, M(r0)∫∫∫

Brc
Ψdxdpds

)
if |x + sp− r0| < rc

.224

In the above, the cutoff constant C has the same units asMb. The second term in the225

minimum effectively caps Mb so that
∫∫∫

Brc
MbΨdxdsdp ≤ M, the total available226

motors at r0. Above the threshold value C, all local motor heads are bound. As C227

increases, so do the number of bound motors at r0 for a fixed value of
∫∫∫

Brc
Ψdxdsdp,228

so larger C values decrease the minimum rod density needed to bind all local motors.229

2.1.3. Fluid. The bulk fluid motion is described by the incompressible Stokes230

equations for low Reynolds number flows with suspended microtubule and motor231

microstructure. As is customary [2], the total stress in the fluid can be divided into232

a Newtonian stress and an extra stress arising from the microstructure, leading to233

−µ∇2
xu(x) +∇xq(x) = ∇x · σp(x) + fm(x), ∇x · u(x) = 0.(13)234235
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In the above, q is the pressure, µ is the dynamic viscosity, σp is the extra stress, and236

fm is the force density due to the motors acting at x on the immersed microtubules.237

We take the fluid domain to be doubly periodic in x, y with no-slip conditions at the238

plate z = −H/2 and at the cover slip z = H/2.239

We define the extra stress as σp = σf + σt similar to [7], where σf arises from240

microtubules inextensibility and σt arises from steric interaction in ṗ. These extra241

stresses are242

(14) σf = σfS : E, σt = −σt[D ·D− S : D],243

where E(x, t) = 1
2

(
∇u +∇uT

)
is the rate-of-strain tensor and S is the fourth order244

moment of Ψ, S(x, t) =
∫

Ψppppdp. The coefficients are σf = πµ4l3/3 ln(2r) and245

σt = πµ8l3U0
r /3 ln(2r), which can be derived using slender body theory (see [7, 26] for246

details). We remark that steric interaction in space does not lead to extra stress terms247

in the slender body framework as the resulting force is constant along the microtubule.248

In this model, since we assume that the microtubules are passively advected by249

the fluid, we apply the force spreading approach of the immersed boundary method250

(see [23]) to our polymeric fluid to obtain the motor force [3]251

(15)

fm(x, t) =

∫∫∫∫
F(y, s,p, r0)δ(y + sp− x)Ψ(y,p, t)Mb(r0, s|(y,p), t)ds dr0 dy dp,252

where F is the force associated with a single motor. Further, we note that the convo-253

lution with the δ−Dirac function converts from the center-of-mass based description254

of Ψ to the spatial description of the force density. The force generated by all bound255

motor heads acting at y + sp is spread to x by integrating over all possible motor256

configurations with head at y+sp. In general motor stepping speed is load-dependent257

[13]. However, here we assume that the motor is stepping at a constant speed Vm,258

where its max stepping speed is Vmax, and thus exerts a constant force of magnitude259

Fst(1− Vm

Vmax
) in −p, with Fst the motor stall force. This gives the simplified expression260

for the motor force261

(16) F(y, s,p, r0) = F(p) = −Fst

(
1− Vm

Vmax

)
p.262

2.2. Two-dimensional reduction.263

Since the microtubules and bound motor heads are restricted to a two-dimensional264

plane of motion [24], the forcing term in the fluid equations can also be localized to265

that plane. Taking advantage of this fact obviates the need to track Ψ andMb in the266

z-dimension, which provides critical memory and computation savings when storing267

and solving for the two distributions.268

2.2.1. Microtubule distribution. The microtubules are centered around a269

plane z = z0, where z0 is about the length of the motor protein, above the bottom270

plate271

(17) Ψ(x,p, t) = Ψz0(x2,p, t)δa(z − z0).272

Here δa is a smooth delta function, chosen to be273

(18) δa(z − z0) =

{
1
2a (1 + cos(π(z−z0)

a )) |z − z0| ≤ a
0 |z − z0| > a

.274
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We remark that to prevent the presence of microtubules or motors at the top or275

bottom plates of the assay, we further require that z0 − a > −H
2 and z0 + a < H

2 .276

We also introduce the notation Ai =
∫
δia(z− z0)dz to denote the moments of δa. By277

construction, we have A1 = 1, A2 = 3/(4a) and A3 = 5/(6a). Next, the microtubules278

are constrained to the plane given the geometry of the assay, so p = (cos θ, sin θ, 0)T .279

Defining p2 = (cos θ, sin θ)T , we have the decomposition Ψz0(x2,p, t) = Ψz0(x2,p2, t).280

Using Eq. (17), the microtubule reduction proceeds by integrating Eq. (1) with281

respect to z. We use a bar to denote the integral over z of a quantity weighted by282

the smooth delta function, for example ū(x2) =
∫

u(x2, z)δa(z)dz. Plugging Eq. (17)283

into Eqs. (1) and (5)-(7), integrating over z, and using the facts that ∇p = p⊥2 ∂θ and284

that both w and δa vanish at the top and bottom plate, we obtain285

(19) ∂tΨz0 +∇2 · (ẋ2Ψz0) + ∂θ(
˙̄θΨz0) = 0,286

where we have defined the quantities ẋ2 and ˙̄θ as287

ẋ2 = −Vspp2 + ū2 +A2U
0
t,‖p2p2 : ∇2D2,z0 −Dt,||∇2 ln Ψz0(20)288

˙̄θ = (∇2ū2 + 2U0
rA2D2,z0) : p⊥2 p2 −Dr∂θ ln Ψz0 .(21)289290

2.2.2. Bound motor distribution. We make the same assumptions for the291

bound motor distribution, since the bound motor heads must be in plane with the292

microtubules they are bound to and write Mb analogously to (17) as293

Mb(r0, s|(x,p), t) =Mb,z0(s, r0|x2, θ, t)δa(z − z0).(22)294295

To derive a reduced equation for the evolved bound motor distribution, we plug in the296

assumptions (22) and (17) into equation (11), integrate with respect to z and divide297

by Ψz0 . Noting that the set Brc(r0) can be approximated as298

Brc(r0) ≈
{

(x, s,p) : (x2, s,p2) ∈ Drc(r0) and − H

2
≤ z ≤ −H

2
+ drc(x2, s, θ)

}
,299

where Drc(r0) = {(x2, s, θ) : |x2 + sp2− r0| < rc} is the disk of capture radius rc and300

drc(x2, s, θ) =
√
r2
c − |x2 + sp2 − r0|2, we find301

∂t(Mb,z0) + ∂s(VmMb,z0) + ˙̃x2 · ∇2Mb,z0 −
˙̃
ζMb,z0 +

˙̃
θ∂θMb,z0

= −koffMb,z0 +
kon

A2
MfB21Drc

.
(23)302

In (23), we defined the tilde quantities similarly to the bar quantities in (20)-(21), but303

with respect to δ2
a as opposed to δa. We have304

˙̃x2 = −Vspp2 +
1

A2
ũ2 +

A3

A2
U0
t,‖p2p2 : ∇2D2,z0 −Dt,‖∇2 ln Ψz0(24)305

˙̃
ζ =

1

2A2
∂̃zw −

B1

A2
U0
t,⊥p2p2 : D2,z0(25)306

˙̃
θ =

(
1

A2
∇2ũ2 + 2U0

r

A3

A2
D2,z0

)
: p⊥2 p2 −Dr∂θ ln Ψz0 .(26)307

308

The constants B1 and B2 are309

B1 =
1

2

∫
δ2
a(z − z0)∂zzδa(z − z0)dz = − π2

4a4
B2 =

∫ −H
2 +drc (x2,s,θ)

−H/2
δa(z − z0)dz.310
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While the quantity B2 is a function of x2, s, θ, plugging Eq. (18) for δa into B2, inte-311

grating and using a Taylor series expansion of sine, yield 0 ≤ B2 ≤ rc/a. Therefore,312

for the remainder of this paper, we let B2 = rc/a.313

Following the same steps for the simplified motor model, we have314

(27) Mb,z0(r0, s|(x2, θ), t) =

0 if (x2, s, θ) /∈ Drc

H min

(
C, M(r0)∫∫∫

Drc
Ψz0

dx2dθds

)
if (x2, s, θ) ∈ Drc

.315

2.2.3. Fluid. While we do not average the fluid equations over z, some of the316

stress and force components are zero as a result of the two-dimensional reduction of317

Mb and Ψ. As the stresses are defined in terms of moments of Ψ with respect to p,318

the implications of Eq. (17) for the stress tensors in (14) are319

σf = σfSz0(x2, t) : E(x, t)δa(z − z0)(28)320

σt = −σt (Dz0(x2, t) ·Dz0(x2, t)− Sz0(x2, t) : Dz0(x2, t)) δ
2
a(z − z0),(29)321322

where we defined

Dz0(x2, t) =

∫
Ψz0(x2, θ, t)ppdθ and Sz0(x2, t) =

∫
Ψz0(x2, θ, t)ppppdθ.

We note that the third row and column of σf,σt are identically zero because the323

z-component of p is zero. Therefore, we use the subscript 2 to denote the upper 2x2324

block of each tensor, such as D2,z0 . Since the motor force F(p) in Eq. (16) is in the325

direction −p, the z-component of fm is zero. As a result, the fluid equations (13) take326

the form327

−µ∇2
2u2(x)− µ∂zzu2(x) +∇2q(x) = ∇2 · σp

2(x) + f2(x)(30)328

−µ∇2
2w(x)− µ∂zzw(x) + ∂zq(x) = 0(31)329

∇2 · u2(x) + ∂zw(x) = 0(32)330331

with332

f2(x) = −Fst

(
1− Vm

Vmax

)
δa(z− z0)2

∫∫∫∫
p2δ(y2 + sp2−x2)Ψz0Mb,z0dsdr0dy2dθ.333

2.3. Nondimensionalization. In this section, we nondimensionalize the set334

of reduced equations introduced in Section 2.2. To do so, we first introduce the335

characteristic scales. Let the characteristic length be L in the x, y dimensions and336

H = εL in the z dimension (ε � 1), let the characteristic velocity be U in the x, y337

dimensions and W in the z dimension, and let the characteristic fluid time scale be338

T = L/U . We set339

x2 = Lx′, z = εLz′ = Hz′, u2 = Uu′2, w = Ww′, t = Tt′,340

where ′ denotes dimensionless quantities. By a similarity argument, we have that341

W = εU .342

Since the motors evolve on a smaller scale than the fluid, we introduce new char-343

acteristic scales. We take the microtubule half-length l as the length scale, the motor344

speed Vm as the velocity scale for motor evolution, and obtain a new time scale,345

τ = l/Vm. We set346

s = ls′, V = VmV
′, t = τt∗.347
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2.3.1. Microtubule distribution. To nondimensionalize Ψ we recall that it348

integrates to N , the number of microtubules. Furthermore, since the smooth delta349

function satisfies
∫
δa(z − z0)dz = 1, we define Ψ′z0 as350

(33) Ψz0(x2, θ, t) =
N

L2
Ψ′z0(x′2, θ, t

′)351

so that
∫∫

Ψ′z0dx
′
2dθ = 1. Alternatively, if we introduce the nondimensional smooth352

delta function δ′a′(z
′ − z′0) as δa(z − z0) = 1

H δ
′
a′(z

′ − z′0) with a′ = a/H to mimic353

the behavior of a Dirac delta function, then we have for the full nondimensional354

density of microtubules Ψ′(x′,p, t′) = Ψ′z0(x′2, θ, t
′)δ′a′(z

′ − z′0) and
∫∫∫

Ψ′dx′dp = 1.355

The microtubule evolution equation (19) is nondimensionalized on the same scale as356

the fluid equations. Therefore, plugging the definition of the rescaled quantities into357

Eqs. (19), (20) and (21) yields358

∂t′Ψ
′
z0 +∇′2 · ( ˙̄x′2Ψ′z0) + ∂θ(

˙̄θ′Ψ′z0) = 0(34)359

ẋ
′
2 = −V ′spp2 + ū′2 +A′2U

0′

t,‖p2p2 : ∇′2D′2,z0 −D′t,||∇
′
2 ln Ψ′z0(35)360

˙̄θ′ = (∇′2ū′2 +A′2U
0′

r D′2,z0) : p⊥2 p2 −D′r∂θ ln Ψ′z0(36)361362

with constants D′t,|| =
Dt,||T

L2 , D′r = DrT , U0′

r =
2U0

rNT
HL2 , U0′

t =
U0

t,‖NT

HL4 , V ′sp =
Vsp

U ,363

and A′2 =
∫
δ
′2
a′(z

′ − z′0)dz′ = HA2. We let ˜U0
t,‖ = A′2U

0′

t,‖ to simplify notation. The364

nondimensional form of the moment tensors are365

S′z0 =
N

L2
Sz0 , Dz0 =

N

L2
D′z0 .366

2.3.2. Motor distributions. We nondimensionalize the bound motor distribu-367

tion Mb so that it integrates to the ratio of bound to total motors:368 ∫∫∫∫
M′bΨ′ds′ dr′0 dx′ dp =

Nb
Nm

and

∫∫∫∫
M′b,z0Ψz′0

ds′dr′0dx
′
2dθ =

Nb
Nm

.369

Recalling that
∫∫∫∫

MbΨds dr0 dx dp = Nb, plugging in the two-dimensional reduc-370

tions (17) and (22) and comparing to the above, we obtain371

(37) Mb,z0(s, r0|(x2, θ), t) =
NmH

lL2NA′2
M′b,z0(s′, r′0|(x′2, θ), t∗)372

and similarly for the full nondimensional distribution373

M′b(s, r0|(x,p), t∗) =
1

A′2
M′b,z0(s, r0|(x2, θ), t

∗)δ′a′(z
′ − z′0).374

We rescale the distribution of free motors to the fraction of free motors, settingMf =375
Nm

L2 Mf and M = Nm

L2 M′ to obtain376

(38) M′f (r′0, t
∗) =M′(r′0)−

∫∫∫
M′b,z0Ψ′z0 ds

′ dx′2 dθ.377

Using these definitions and the second set of nondimensional variables, we have378

∂t∗M′b,z0 + ∂s′M′b,z0 +
τ

T
˙̃
x′2 · ∇2′M′b,z0 −

τ

T
˙̃
ζM′b,z0 +

τ

T
˙̃
θ∂θM′b,z0

= −k′offM′b,z0 + k′onM′f1Dr′c
,

(39)379
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together with the dimensionless fluxes380

˙̃
x′2 = −V ′spp2 +

1

A′2
ũ′2 +

A′3
A′2

U0′

t,‖p2p2 : ∇2D
′
2,z0 −D

′
t,‖∇

′
2 ln Ψ′z0381

˙̃
ζ ′ =

1

2A′2
∂̃z′w′ −

B′1U
0′

t,⊥

A′2
p2p2 : D′2,z0382

˙̃
θ =

(
1

A′2
∇′2ũ′2 +

A′3
A′2

U0′

r D′2,z0

)
: p⊥2 p2 −D′r∂θ ln Ψ′z0383

384

and constants A′3 = H2A3, U0
t,⊥ =

U0
t,⊥NT

H3L2 , B′1 = H4B1, k′off = koffτ , k′on =385

konτ lNrc/a. We note that the dot in the above equations refers to a time deriva-386

tive with respect to t∗. For completeness, we write the definition of the dimensionless387

disk of radius r′c centered at r′0 as388

Dr′c
(r′0) =

{
(x′2, s

′, θ) :

∣∣∣∣x′2 +
l

L
s′p2 − r′0

∣∣∣∣2 ≤ l2

L2
r′2c

}
.389

As the bound motor density timescale is approximately a thousand times smaller than390

the microtubule timescale, we drop most of the terms with τ
T in Eq. (39), except the391

terms involving the steric parameters U0′

t,‖ and U0′

r as their product with τ/T could392

end up being order one. We drop the term with U0′

t,⊥, since our assumptions that393

the motion of the microtubule is constrained to a plane makes it a small number.394

Eliminating these terms we have395

∂t∗M′b,z0 + ∂s′M′b,z0 +
A′3
A′2

τ

T
U0′

t,‖p2p2 : ∇′2D′2,z0 · ∇2′M′b,z0

+
A′3
A′2

τ

T
U0′

r D′2,z0 : p⊥2 p2∂θM′b,z0 = −k′offM′b,z0 + k′onM′f1Dr′c
.

(40)396

Again, for simplicity, we introduce Ũ0
t,‖ = A′3τU

0′

t,‖/(A
′
2T ) and Ũ0

r = A′3τU
0′

r /(A
′
2T ).397

For the simplified motor model, it is straightforward to see that the nondimen-398

sional version of Eq. (27) is399

(41) M′b,z0(r′0, s
′|(x′2, θ), t∗) =


0 if (x′2, s

′, θ) /∈ D′r′c

min

(
C ′,

M′(r′0)∫∫∫
D′

r′c
Ψ′

z′0
dx′

2dθds
′

)
if (x′2, s

′, θ) ∈ D′r′c
,400

where C ′ is an independent problem specific parameter.401

2.3.3. Fluid. To nondimensionalize the bulk fluid equations, we first rescale the402

extra stresses as403

σf = σ′fS
′
z0(x2, t) : E′(x, t)δ′a(z − z0)(42)404

σt = −σ′t
(
D′z0(x2, t) ·D′z0(x2, t)− S′z0(x2, t) : D′z0(x2, t)

)
δ′2a (z − z0),(43)405406

and E(x, t) = 1
T E′, where E′ is dimensionless rate-of-strain tensor. Here, we note407

that the dimensionless gradient of the velocity field has the form408

∇′u′(x, t) =

(
∇′2u2

′ 1
ε∂z′u

′
2

ε(∇′2w′)T ∂z′w
′

)
.409
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12 S. C. COOK, C. HOHENEGGER, AND T. SHINAR

In Eqs. (42)-(43) the constants are σ′f =
σfN
THL2 , and σ′t = σtN2

H2L4 . Plugging in Eq. (33)410

for Ψ and Eq. (37) forMb into the force density (15), changing variables and setting411

F = Fst

(
1− Vm

Vmax

)
Nm

L2HA′
2
, we obtain f2(x, t) = −F f ′2(x′, t′) where412

f ′2(x′, t′) = δ
′2
a′(z

′ − z′0)

∫∫∫∫
p2δ

(
y′2 +

l

L
s′p2 − x′2

)
Ψ′z0M

′
b,z0ds

′dr′0 dy
′
2 dθ.413

414

Finally, we plug the nondimensional stresses and forces into the incompressible415

reduced Stokes equation (30)-(32) and we let the characteristic pressure be P0 to find416

(ε = H/L)417

−∇′22u′2 −
1

ε2
∂z′z′u

′
2 + P ′0∇′2q′ = F ′f ′2 + σ̃f∇′2 · σf’ − σ̃t∇′2 · σt’(44)418

−∇′22w′ − 1

ε2
∂z′z′w

′ + P ′0∂z′q
′ = 0(45)419

∇′2 · u′2 + ∂z′w
′ = 0.(46)420421

In the above, the constants are P ′0 = P0L
µU , F ′ = FL2

µU , σ̃f = L
µU σ

′
f , and σ̃t = L

µU σ
′
t. In422

the remainder of this paper and the supplemental movies, we drop all prime, star, tilde423

and bar notation and numerically solve the complete set of nondimensional equations424

which are summarized in Table 1.425

3. Implementation.426

In this section, we discuss the discretization of the nondimensionalized equations427

summarized in Table 1 and the development of a stable algorithm. Because Ψz0 and428

Mb,z0 evolve on two different timescales, we discretize Ψz0 at time tn, n = 0, . . . , NT429

with adaptive time step dt and Mb,z0 at time tm, m = 0, . . . , NT∗ with smaller430

adaptive time step dt∗ such that tn ≤ tm ≤ tn+1. After initializing Ψz0 and Mb,z0 ,431

we calculate the initial time step dt and, if the evolved motor model is being used, the432

initial time step dt∗ as well. The motor forces and steric stresses are computed next,433

and used to solve the fluid equations. The new fluid velocities are used to update434

Ψz0 to time t+ dt, and finally Mb,z0 is updated to time t+ dt based on the updated435

Ψz0 . New time steps are computed, and the simulation continues. The procedure436

is summarized in Algorithm 1 and details are given below. Our numerical scheme437

is similar to that of our previous scheme in [11]. The primary differences are that438

the fluid equations are now solved in three dimensions, and that extra stress terms439

resulting from the steric interactions are included.440

To compute the time step dt, we calculate the maximum of the angular and441

linear advection velocities in Eq. (33) and adjust the time step according to the CFL442

condition. To find the small time step for Mb, we limit the fraction of available443

motors that can bind or unbind in any given time step. To calculate dt∗, we compare444

the change due to s-advection with the greatest change due to binding and unbinding,445

and use the more restrictive of the two to clamp dt∗.446

3.1. Microtubule density. We discretize Ψz0(x2, θ) over the domain (x2, θ) ∈447

[−1, 1]2 × [0, 2π] at the plane of motion z = z0 with a triply periodic grid of size448

Nx×Ny×Nθ, with Nx = Ny. The advection terms in (MT1) (Table 1) are discretized449

spatially with an upwinding scheme and Superbee flux limiter [6]. The equation (MT1)450

is integrated in time using second order Adams-Bashforth for the advective terms and451

Crank-Nicolson for the diffusive terms. The resulting system of equations for Ψz0 is452

solved using the Conjugate Gradient method with Incomplete Cholesky factorization453

used as a preconditioner.454
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Model Summary
Microtubules

∂tΨz0 +∇2 · (ẋ2Ψz0) + ∂θ(θ̇Ψz0) = 0

ẋ2 = −Vspp2 + u2 + U0
t,‖p2p2 : ∇2D2,z0 −Dt,‖∇2 ln Ψz0

θ̇ = (∇2u2 + U0
rD2,z0 : p⊥2 p2 −Dr∂θ ln Ψz0

(MT1)

(MT2)

(MT1)

Motors

∂tMb,z0 + ∂sMb,z0 + U0
t,‖p2p2 : ∇2D2,z0 · ∇2Mb,z0

+U0
rD2,z0 : p⊥2 p2∂θMb,z0 = −koffMb,z0 + konMf1Drc

Mb,z0 =

0 if |x2 + l
Lsp2 − r0| ≥ rc

min

(
C, M(r0)∫∫∫

Drc
Ψz0

dx2dp2ds

)
if |x2 + l

Lsp2 − r0| < rc

Mf =M−
∫∫∫

MbΨz0 ds dx2 dθ

(EM)

(SM)

(MF)

Fluid
−∇2

2u2 − 1
ε2 ∂zzu2 + P0∇2q = σf∇2 · σf − σt∇2 · σt + F f2

−∇2
2w − 1

ε2 ∂zzw + P0∂zq = 0

∇2 · u2 + ∂zw = 0

(U1)

(U2)

(U3)

Force
f2 = Fδ2

a(z − z0)
∫∫∫∫

p2δ(y2 + l
Lsp2 − x2)Ψz0Mb,z0 ds dr0 dy2 dθ (F1)

Table 1: Summary of the nondimensionalized model equations for the evolution of
microtubules, motors and fluid in a gliding assay. The primes and nondimensionalizing
constants have been dropped for simplicity.

3.2. Motor distributions. To advance Mb,z0 forward in time according to455

the evolved motor model (EM) in Table 1, two-step Adams-Bashforth with variable456

timestep dt∗ is used to discretize the s-advection term and the binding and unbinding457

terms. We clamp Mb,z0(r0, s|x2, θ) so that
∫∫∫
Mb,z0Ψz0 ds dx2 dθ ≤M(r0).458

The bound motor density Mb,z0 is high-dimensional as it tracks motor tail posi-459

tion, the filament arclength parameter, and the center of mass and orientation of the460

filament the bound motor head is attached to. However, since a head detaches if the461

elongation of the motor stalk exceeds a certain threshold,Mb,z0 can be computed and462

stored sparsely in a local grid around r0. The specific condition x2 + l
Lsp2 − r0 ≤ rc463

allows further pruning of this localized configuration space. In our formulation, the464

activity of the motors anchored at r0 is independent of motors anchored elsewhere. In465

discrete form each cell y stores the local grid over x, θ, s for bound motors whose tails466

are anchored anywhere within the boundaries of cell y. Each cell’s motor distribution467

is updated in parallel. Mb,z0 is stored as a two-dimensional array over r0, each con-468
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Algorithm 1 Numerical evolution scheme for the coupled microtubule density, motor
protein distribution, and fluid velocity equations.

Initialize Ψz0 and Mb,z0 .
Precompute LU -decomposition of semi-spectral matrices for all frequency pairs.
while t < tend do

Compute adaptive dt.
Compute Ψz0(t+dt) by solving (MT1)-(MT3) using second order Crank-Nicolson
for the diffusive terms and Adams-Bashforth 2 for the advection terms.
if (using EM) then

set t∗end = t+ dt.
while t∗ < t∗end do

Compute adaptive dt∗.
Compute Mb,z0(t∗ + dt∗) by solving (EM) with Adams-Bashforth 2.
Update Mf from Mb,z0 with (MF).

end while
else if (using simplified motor model) then

Solve (SM)
Update Mf from Mb,z0 with (MF).

end if
Calculate extra stresses.
Calculate motor force (F1) using trapezoidal rule and a local grid.
Solve semi-spectral (U1)-(U3).

end while

taining an unrolled flat array for x2, s, θ. We solve the evolved motor density equation469

on the GPU, where each r0 is updated in SIMD fashion by several threads. Another470

advantage to this layout is that Mb,z0 independent outermost two-dimensional array471

can be split up and sent to multiple GPUs, or solved in batches on a single GPU if the472

shared memory is exceeded. As grid resolution increases, the three copies ofMb,z0 at473

the current and two previous times required by the two-step Adams-Bashforth time474

integration scheme may not all fit onto the GPU on-board memory simultaneously475

and instead need to be solved a few rows at a time.476

Since we do not track free motor heads, we can discretize the distribution of free477

motors Mf and total motors M over a uniform grid of size Nx ×Ny. Updating Mf478

from M and Mb,z0 is straightforward and parallelizable over x2 by evaluating the479

discretized form of (MF) in Table 1.480

3.3. Fluid. We discretize the domain into Nx×Ny ×Nz grid cells, where Nx =481

Ny, and solve for the fluid state at each discrete time tn. u2 and q are sampled at cell482

centers, while w is sampled at the z faces. As we have periodic boundary conditions483

in the x2−plane, we use a semi-spectral approach and take the Fourier transform in484

x2 of (U1)-(U3), giving for each frequency pair k = (kx ky)T485

(|k|2 − 1

ε2
∂zz)û

n
2 + iP0q̂

nk = F f̂n2 + iσf σ̂f
n
k + iσtσ̂t

n
k(47)486

(|k|2 − 1

ε2
∂zz)ŵ

n + P0∂z q̂
n = 0(48)487

ik · ûn2 + ∂zŵ
n = 0.(49)488489
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Equations (47)-(49) yield an independent (4Nz − 1) × (4Nz − 1) linear system for490

each frequency pair. This formulation is computationally advantageous for several491

reasons. First, the equations for each k can be solved independently, allowing simple492

parallelization. Second, the coefficient matrix of each linear system is constant in493

time, and an LU-factorization for each can be precomputed and stored. We can494

reasonably store Nx × Ny

2 separate (4Nz − 1)× (4Nz − 1) matrices, and use them to495

solve for multiple right-hand sides. The FFTW library [8] is used with precomputed496

transformation mappings to efficiently perform the FFT and inverse FFT.497

As the microtubules are concentrated around the z = z0 plane, it is desirable to498

have more accuracy there and the thin δa-width region around it than in the distant499

assay regions above and below it. Given the aforementioned scaling of each frequency500

pair fluid solve matrix with N2
z , we use a nonuniform grid with variable spacing in501

the z dimension. We store û2, and q̂ at the z−cell centers, and ŵ at the z−cell faces.502

A schematic of the z-grid is shown in Figure 3.

Fig. 3: Schematic of the nonuniform staggered grid in z used to store the spectral
values of û, ŵ, p̂.

503

To compute second derivatives with respect to z at a z−cell j, we construct504

a fourth order Lagrange interpolating polynomial using zj−2, zj−1, zj , zj+1, zj+2,505

and differentiate twice. Near the boundaries, we use boundary data and the no slip506

boundary condition for the extreme samples and drop to third order interpolation for507

the bottom-most and top-most equations. For first derivatives at a z−face j + 1/2,508

we construct a third order Lagrange interpolating polynomial using zj−1, zj , zj+1,509

zj+2, and differentiate once. Near the boundaries, we use the nearest four samples to510

construct the interpolating polynomial.511

The motor force calculation is the single most computationally intense portion of512

the algorithm because the force spreading dictates that nearby forces be calculated in513

order to determine the total force at x. In terms of implementation, this effectively514

increases the already high dimensionality of the bound motor distribution, whether515

it is approximated with the simple motor model or the evolved motor model. To516

account for the motor force’s highly parallel but computationally intensive nature, it is517

calculated on a GPU using a similar scheme to the bound motor solve described above.518
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A speedup of roughly forty times is observed versus a single-core implementation.519

Computation of the stress tensors is straightforward and parallelizable. σf de-520

pends on the rate-of-strain tensor E, which we have only for the previous time step521

since we compute the extra stresses before the fluid solve. We therefore linearly ex-522

trapolate E at the new time t+ dt using the current and previous values, as in [7].523

4. Results. In this section, we present results for various experiments with the524

following parameters held constant: 2µm-length microtubules, kon = 25, koff = .1,525

Ut = −.01, 125×125µm2 assay, Nm = 3×106 motors, Vmax = 1µms−1, andN = 22300526

microtubules. Our nonuniform z-grid has 30 evenly sized fine z-cells covering the range527

{−.5,−.4}, with z0 = −h
2 + .05 = −.45 in the middle. Above z = −.4, the height of528

each cell doubles consecutively until the cell size is sixteen times greater than the fine529

z-cells at the bottom. Our final 3D grid dimensions are 128× 128× 49, with 32 cells530

in s and θ.531

In the figures, we plot the nondimensionalized spatial microtubule distribution532

(50) Ψspatial,z0(x2, t) =

∫
Ψz0(x2, θ, t)dθ533

with color ranging from white (low) to blue (high). We plot the nondimensional534

spatial bound motor distribution535

(51) Mb,spatial,z0(r0, t) =

∫∫∫
Mb,z0(s, r0, t|x2, θ)Ψz0(x2, θ, t)dsdx2dθ536

with color ranging from tan (low) to red (high). The colorbars are annotated with the537

corresponding percentage of the total available motors in the bound configuration, at538

the low and high ranges of each normalization. Finally, we compute the orientation539

matrix540

(52) N(x2, t) =

∫
p2p

T
2 Ψz0(x2, θ, t)dθ∫

Ψz0(x2, θ, t)dθ
541

and draw its eigenvectors in red scaled by their associated eigenvalues. When present,542

velocity vectors (black) and orientation eigenvectors are plotted for every fifth cell for543

clarity.544

4.1. Evolved motor model.545

Single clump. We first examine the processive behavior of a clump of aligned filaments546

as the steric alignment parameter is varied between Ur = 0 and .01. We present547

results for Ur = 0, .01 and the evolved motor model in Figure 4. We observe that548

as Ur increases to .01 the clump better maintains its shape, whereas at Ur = 0549

microtubules become concentrated along the leading edge of the clump, which assumes550

a widening crescent-like shape. The bottom row of Figure 5 shows the microtubule551

orientation field at the final frame displayed in the upper rows with Ur = 0 (left)552

and Ur = .01 (right). For higher values of Ur, the microtubule orientation field is553

uniformly aligned. For smaller values of Ur, the microtubule orientation field at the554

clump’s leading edge becomes tangential to the leading edge, as the rods rotate to555

avoid compression or extension by the steep velocity gradient, clearly visible in the556

Ur = 0 case. For Ur = .01, the steric resistance to rotate relative to neighboring557

microtubules counteracts this effect and the orientation field remains more uniform.558

In vitro experiments have shown shape persistence in aligned clumps [28], qualitatively559

similar to the Ur = .01 case.560

This manuscript is for review purposes only.



MICRO-MACRO FRAMEWORK FOR GLIDING ASSAYS 17

Fig. 4: Single aligned microtubule clump driven by the evolved motor model. First
row: Ur = 0 velocity field. Second row: Ur = .01 velocity field. Images are at times
t=0, 15, 30, and 45 sec.

Fig. 5: Single aligned clump orientation field at time t=45 sec for Ur = 0 (left) and
Ur = .01 (right).

Colliding clumps. We examined the behavior of colliding clumps for three values of561

the steric alignment parameter Ur = 0, .001, .01 and both head-on and perpendicular562

collisions. When clumps collide, the behavior depends on the angle between the563

microtubule orientations of the clumps.564

A nearly perpendicular collision as in Figure 6 results in the clumps merging and565

moving as a single clump for all Ur tested. While the Ur term drives local alignment,566

alignment also occurs in the Ur = 0 case as follows. When the self-propulsion velocity567

is zero, microtubules move passively with the flow. As motor forces act directly on568

the fluid, motor forces acting in opposite directions cancel out. This cancellation569

occurs in the example depicted in Figure 6, where the resultant force points in the570

average direction of the colliding microtubule orientations, in this case, upwards.571

These two mechanisms give different qualitative results as illustrated in Figure 6. In572

the Ur = 0 case (third row), the microtubule distribution remains isotropic as long573

as local fluid flow remains negligible, whereas in the Ur = .01 case (fourth row), we574

observe steric alignment of the microtubules throughout the entire domain. Higher Ur575
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results in steeper gradients in microtubule orientation and density at the midline. The576

higher concentration in turn leads to stronger motor forces and higher fluid velocities.577

These Ur-dependent collision phenomena are observed wherever two regions of dense578

microtubules collide.

Fig. 6: Nearly perpendicular microtubule clumps driven by the evolved motor model
colliding. First row: Ur = 0 velocity field. Second row: Ur = .01 velocity field. Third
row: Ur = 0 orientation field. Fourth row: Ur = .01 orientation field. Images are at
times t=0, 45, 90, and 180 sec.

579

In the case of two clumps with antiparallel orientations colliding close to head-on580

(Figure 7, supplemental movie 1 first example), significant differences are observed581

for Ur = 0 versus Ur = .01. In the Ur = 0 case, the motor forces drive an extensional582

fluid flow on either side of the collision centerline, creating two clumps moving in583

opposite directions. In the case Ur = .01, the steric force prevents alignment with584

the extensional flow and the microtubules of each clump slide past each other. As585

a result of slight differences in the original clump position, the clumps break down586

after collision, and smaller clumps pass through each other and continue along the587

initial clump trajectories. The orientation field (Figure 7, fourth row) shows that the588

microtubules do not rotate during the initial collision and aftermath.589

Vortex Lattice. To test our model’s ability to reproduce characteristics of the590
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Fig. 7: Antiparallel microtubule clumps driven by the evolved motor model colliding.
First row: Ur = 0 velocity field. Second row: Ur = .01 velocity field. Third row:
Ur = 0 orientation field. Fourth row: Ur = .01 orientation field. Images are at times
t=0, 90, 180, and 270 sec. See supplemental movie 1 first example.

lattice of vortices observed in [32], we simulate four overlapping rings of microtubules591

oriented in clockwise fashion as shown in Figure 8 and the first example in supple-592

mental movie 2. In the overlapping regions, the microtubules from adjacent rings are593

oriented opposite each other. We observe extensional flow in the dense overlapping594

regions combined with counterclockwise rotation driven by the initial orientations.595

With Ur = 0 the rotational flow develops four vortices rotating clockwise centered596

about the spaces between the initial four vortices. The new vortices contract then597

expand outward until they develop overlapping regions moving in opposite directions,598

similar to the initial condition. The process repeats itself; extensional flow and rota-599

tion forms again in the overlapping regions, leading to the formation of four vortices600

rotating counterclockwise at the original four vortex locations. Due to diffusion, the601

maximum concentration and hence velocity decreases on average throughout the pro-602

cess. Due to symmetry breaking, the transition from vortices with overlapping regions603

to new vortices with overlapping regions and opposite rotation repeats a few times604

at most, depending on parameters, until the original structure is lost. Increasing Ur605
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from 0 to .01 increases the maximum microtubule density and flow velocity and gives606

steeper gradients in microtubule concentration and orientation, as seen in previous607

examples. It also affects the degree to which the initial dense overlapping regions608

break down with the rotational forcing from the motor proteins. In particular, for609

Ur = .01 (Figure 8, second and fourth rows), the dense overlapping regions extend but610

do not separate and thus preserve much of the original four vortex structure. With611

the inclusion of the steric interaction term, our results are more consistent with the612

experiments of [32], which demonstrate a temporally persistent lattice of vortices.613

Fig. 8: Vortex lattice experiment with evolved motor model. First row: Ur = 0
velocity field. Second row: Ur = .01 velocity field. Third row: Ur = 0 orientation
field. Fourth row: Ur = .01 orientation field. Images are at times t=0, 240, 480, and
720 sec. See supplemental movie 2 first example.

Perturbation. We perturb a uniform isotropic microtubule density in both space614

and orientation by adding615

1

a

8∑
i,j=1

εij cos(πix+ ξij) cos(πjy + ξij)Pij(θ),(53)616

617

where εij is a uniform random number in [−.001, .001], ξij is a uniform random number618

in [0, 2π], a is a normalization constant and Pij(θ) are third order polynomials in619
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cos(θ) and sin(θ) with random coefficients in [−1, 1]. The Ur = 0 case results in a620

spatiotemporally stable Ψz0 density (Figure 9, supplemental movie 3). In the Ur = .01621

case, continuous narrow tracks of stationary microtubules form and remain stable.

Fig. 9: Perturbation in x and θ giving rise to stationary concentrated pattern with
Ur = .01 for evolved motor model. First three images: evolution of microtubule den-
sity in time. Fourth image: magnified section of final top row image with orientation
eigenvectors in red. The microtubule density concentrates along steep gradients in
the microtubule orientation field. Images are at times t=0, 75, and 113 sec. See
supplemental movie 3.

622

4.2. Evolved motor model with self-propulsion.623

Colliding clumps. We repeat the antiparallel colliding clumps experiment with the624

addition of a self-propulsion velocity Vsp (Eq. (2), (MT2)) in Figure 10 and the second625

two examples in supplemental movie 1. In the case of Vsp = 0, illustrated in Figure 7,626

the clumps break up as they collide. At Vsp = 1 and Ur = .01, the clumps pass through627

each other largely intact. For Vsp = 1 and Ur = 0, we see a combination of both effects,628

with some passthrough and some spreading of microtubules with the extensional flow629

formed in the collision. In general, varying the value of Vsp between 0 and 1 leads630

to a corresponding combination of the extreme Vsp = 0 and Vsp = 1 behaviors. The631

experiments of [28] demonstrate a combination of passthrough and breakup when632

clumps collide. Experiments of the behaviors of microtubules undergoing collisions633

[32] show that colliding microtubules can merge and realign or pass through depending634

on the angle of collision. With the addition of a self-propulsion term, our numerical635

experiments reproduce such behaviors.636

Vortex rings. We repeat the four ring vortex experiment with the addition of a637

self-propulsion velocity Vsp (Figure 11, second and third examples in supplemental638

movie 2). With Vsp = .1 and Ur = 0, depicted in the first row, motor forces at the639

overlapping regions of the initial rings create a shear flow that separates these regions640

and, in conjunction with the self-propulsion, creates counterclockwise vortices at the641

separatrix between clockwise vortices as seen in the second image of the first row. This642

separates the dense bands of microtubules into two connected bands that translate643

and rotate away from each other, eventually meeting other bands at the centers of the644

original rings in a cross-like pattern (third image). The microtubules gather at the645

centers of the crosses, then reverse direction and expand outward in a nonsymmetric646

way (fourth image), similar to the switching behaviors observed when the experiment647

is run without self-propulsion (Figure 8). With Vsp = .1 and Ur = .01, depicted in the648

second row, the steric alignment prevents the shear flow from separating the initial649

overlapping regions, and the self-propulsion drives antiparallel sliding that stretches650

the dense microtubule regions into long cohesive bands (second image, second row).651

The bands break down into smaller clumps (third image), but the steric alignment652
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Fig. 10: Colliding clump experiment with added self-propulsion velocity. First row:
Ur = 0 and Vsp = .1. Second row: Ur = .01 and Vsp = .1. Third row: Ur = 0 and
Vsp = 1. Fourth row: Ur = .01 and Vsp = 1. Images are at times t=0, 105, 210, 315
sec in rows one and two, and at t=0, 24, 48, 72 sec in rows three and four. See second
and third examples in supplemental movie 1.

term keeps the new clumps following the paths of the initial bands, which roughly653

correspond with the initial four vortex structure (fourth image) as observed without654

self-propulsion (Figure 8). Increasing the self-propulsion velocity to Vsp = 1 causes the655

self-propulsion to dominate the effects of the motor forces, so microtubule passthrough656

(with alignment if Ur > 0) becomes dominant. With Ur = 0 (third row), switching657

events occur continuously and the four quadrants of the assay are symmetric. We658

observe that with Ur = .01, passthrough rapidly breaks up the ring structure (fourth659

row). As a result, no switching events occur.660

Perturbation We repeat the perturbation experiment with the addition of a self-661

propulsion velocity Vsp (Figure 12, second and third examples in supplemental movie662

3). At Vsp = 1 or .1 and Ur = 0 the clumps translate but simply pass through663

one another without increasing in density or aligning. With Vsp = .1 and Ur = .01664

(first row), we get fast translational microtubule bands as opposed to the stationary665

continuous tracks in the Vsp = 0 case shown in Figure 9. At Vsp = 1 and Ur = .01666
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Fig. 11: Vortex ring experiment with added self-propulsion velocity. Images are il-
lustrative of behavior and thus are not necessarily taken at the same simulation time
between rows. First row: Ur = 0 and Vsp = .1. Second row: Ur = .01 and Vsp = .1.
Third row: Ur = 0 and Vsp = 1. Fourth row: Ur = .01 and Vsp = 1. Images are at
times t=0, 225, 450, 675 sec in rows one and two, and at t=0, 60, 120, 180 sec in rows
three and four. See second and third examples in supplemental movie 2.

(second row), the bands form faster and are denser than in the Vsp = .1 case.667

4.3. Simplified motor model.668

Vortex rings. For the parameters, experiments, and timescales presented here, the669

differences in density and feature shape and location are observed between the mi-670

crotubule distribution fields generated by the simplified and evolved motor models671

are minor. One notable exception is that in the vortex ring experiment, the evolved672

motor model drives clockwise rotation in the four central clumps whereas the sim-673

plified motor model drives counterclockwise rotation (Figure 13). This effect is due674

to a slight difference in the motor force pattern around each clump. On timescales675

longer than those presented in this work, simulations may eventually show significant676

divergence.677

Colliding clumps. Results from the antiparallel colliding clump simulation driven678

by the simplified motor model are presented in Figure 14 (supplemental movie 4)679
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Fig. 12: Perturbation experiment with added self-propulsion velocity. First row:
Ur = .01 and Vsp = .1. Second row: Ur = .01 and Vsp = 1. Images are at times t=0,
105, 210, 315 sec. See second and third examples in supplemental movie 3.

for values of the parameter C = 10, 50, 250. Increasing C not only increases the680

fluid velocities in the simulation by increasing value of Mb,spatial,z0 for a given Ψz0 ,681

but also changes the flow features that emerge over time. We observe that for the682

highest tested value C = 250, any cell with a Ψspatial,z0 value over a threshold results683

in fully bound motors, exercising the second argument to the minimum function in684

the definition of the simplified motor model (SM). Therefore two cells with distinct685

Ψspatial,z0 values above the threshold will produce motor forces of equal magnitude,686

changing the emergent behavior within the assay.687

Fig. 13: Magnified view of vortex ring experiment with evolved motor model (top row)
and simplified motor model (bottom row), Ur = 0 and Vsp = 0. A counter-clockwise
velocity field forms with the evolved motor model, whereas a clockwise velocity field
forms with the simplified motor model. Images are at times t=150, 300, 450, 600 sec.

Perturbation with and without motor-based fluid forces. In Figure 15 (supple-688
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Fig. 14: Antiparallel colliding clump experiment with simplified motor model, Ur =
.001 and Vsp = 0. First row: C = 10. Second row: C = 50. Third row: C = 250. First
row images are at times t=0, 300, 600, 900 sec. Second row images are at times t=0,
21, 42, 63 sec. Third row images are at times t=0, 15, 30, 45 sec. See supplemental
movie 4.

mental movie 5), we repeat the perturbation experiment with self-propulsion in the689

presence and absence of the hydrodynamic forces generated by the motor proteins.690

This allows us to test the observation of [28] that the stability and size of the observed691

filament patterns depend on long-range hydrodynamic interactions. Consistent with692

[28], we observe larger flow structures forming in a shorter amount of time in the pres-693

ence of the fluid flows driven by the motor proteins. We used the simplified motor694

model, C = 100, Ur = .01, and Vsp = .1.695

5. Conclusions. We have developed a modeling and simulation framework cou-696

pling multiple microscopic models of propulsion to macroscopic steric and hydrody-697

namic interactions in a quasi-two-dimensional assay. Populations of bound and free698

motor proteins and microtubules are represented as continuum distributions. The699

framework facilitates study of the relative effects of hydrodynamic and steric interac-700

tions on emergent phenomena. Stress tensors arising from rotational and translational701

steric interactions and self-propulsion are supported in addition to body forces from702

active motor proteins. Experimentation is needed to empirically determine the steric703

interaction parameters Ur and Ux. We avoid closure approximations in the z dimen-704

sion, and high precision around a z-plane of interest is achieved without incurring705

significant computational overhead. Results demonstrate our framework’s ability to706

replicate some of the behavior of individual and colliding clumps of filaments includ-707

ing crossovers, alignment, merging, and splitting [29], and support observations of [28]708

regarding hydrodynamic effects.709

This manuscript is for review purposes only.



26 S. C. COOK, C. HOHENEGGER, AND T. SHINAR

Fig. 15: Perturbation experiment with (first row) and without (second row) motor-
based fluid forces, showing faster formation of larger-scale features in the former case.
First row images are at times t=150, 300, 450, 600 sec. Second row images are at
times t=300, 600, 900, 1200 sec. See supplemental movie 5.

We present two motor protein models, the evolved motor model which incorpo-710

rates motor head procession and binding/unbinding dynamics, and the simplified mo-711

tor model which determines the bound motor distribution instantaneously as a func-712

tion of the microtubule distribution, and therefore eliminates the high-dimensional713

and computationally expensive motor evolution at the smaller timescale t∗. While714

the different models may yield visually similar motor distributions, they can result in715

qualitatively different dynamics as illustrated in Figure 13. Additional motor mod-716

els could be investigated within our framework, for example, models accounting for717

cooperativity or competition between motor proteins. The framework could also be718

extended beyond gliding assays to support motor complexes directly linking micro-719

tubules as in [9].720

Motor forces on the fluid compose flow features in the microtubule density by721

advecting all local microtubules with the same velocity. Even without any steric in-722

teraction terms, two colliding clumps will proceed in a direction roughly equal to723

the average of their orientations. However, the motor forces acting on the fluid are724

prone to cancellation in isotropic or anti-aligned microtubule configurations. Com-725

bining either motor model with a self-propulsion term in the microtubule advective726

flux provides a mechanism for anti-parallel sliding resulting in persistent motion of727

the microtubules. Addition of the self-propulsion term enables the passthrough of728

colliding clumps, consistent with the simulations of [29].729
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