
A Protocol for Reputation Management in Super-Peer Networks

Shalendra Chhabra
University of California, Riverside

California, USA
schhabra@cs.ucr.edu

Ernesto Damiani
Università di Milano
26013 Crema - Italy

damiani@dti.unimi.it

Sabrina De Capitani di Vimercati
Università di Milano
26013 Crema - Italy

decapita@dti.unimi.it

Stefano Paraboschi
Università di Bergamo
24044 Dalmine - Italy

parabosc@unibg.it

Pierangela Samarati
Università di Milano
26013 Crema - Italy

samarati@dti.unimi.it

Abstract

Peer-to-Peer (P2P) applications have recently seen an
enormous success and have reached millions of users. The
main reason of this success is the anonymity the users enjoy.
However, as recent experiences with P2P networks show,
this anonymity offers an opportunity to exploit the network
for abuses (e.g., the spread of malware).

In this paper we extend our previous work on P2PRep, a
reputation management protocol for pure P2P networks, in
the case of super-peer networks. We present the design and
implementation of reputation-aware servents.

1. Introduction

In this paper we extend our previous work on the repu-
tation management protocol P2PRep [3]. We propose the
SupRep protocol and present its design and implementa-
tion. We have developed the SupRep protocol on the top of
Gnutella 0.6 [5] which is the standard of Gnutella at the time
of writing of this paper. We have chosen Gnutella 0.6 be-
cause it has a distributed architecture with super-peers (Ul-
trapeers)1 for file exchange and its specifications are open
and it is one of the most widely used protocol. We intro-
duce the role of repeater assigned to selected peers (and
super-peers) to support interaction among servents behind
firewalls. We also study the case of malicious super-peers
and show that the protocol is robust to known attacks. Due
to the strict page limit, we will assume that the reader is fa-
miliar with the concept of super-peers in P2P networks [8].

1 Ultrapeers, super-peers and super-nodes are terms used interchange-
ably.

2. SupRep Protocol

Each servent has associated a self-appointed serventID,
which can be communicated to others when interacting, as
established by the P2P communication protocol used. The
serventID of a party (intuitively a user connected at a ma-
chine) can change at any instantiation or remain persis-
tent. However, persistence of a serventID does not affect
anonymity of the party behind it, as the serventID works
only as an opaque identifier.2 Our approach encourages per-
sistence as the only way to maintain history of a serventID
across transactions.

In a Gnutella-like environment, a servent p looking for a
resource broadcasts a Query message, and selects, among
the servents responding to it (which we call offerers), the
one from which to execute the download. Our approach is
to allow p, before deciding from where to download the re-
source, to inquire about the reputation of offerers by polling
its peers. The basic idea is as follows. After receiving the re-
sponses to its query, p can select a servent, or a set of ser-
vents. Then, p polls its peers by broadcasting a message
PollRequest requesting their opinion about the selected
servents. All peers can respond to the poll with their opin-
ions in PollReply about the reputation of each of such ser-
vents. The super-peers in the network collect the PollReply
messages coming from the leaf nodes in their own cluster,
considering a certain timeout and synthesize these messages
into one single CumulativePollReply message containing
the encrypted leaf votes (which it collected from individ-
ual PollReply as mentioned above), and its own encrypted
votes (if it wants to express them). The poll requestor p
parses the CumulativePollReply message and extracts the

2 It must be noted that, while not compromising anonymity, persistent
identifiers introduce linkability, meaning transactions coming from the
same servent can be related to each other.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



votes. The votes are then checked (we will elaborate more
on this in Section 3) and, once validated, the poll requestor
p can use the opinions expressed by these voters to make
its decision. Note that voters declare their serventID, which
can then be taken into account by p in weighing the votes re-
ceived (p can judge some voters as being more credible than
others).

The intuition behind our approach is therefore very sim-
ple. A little complication is introduced by the need to pre-
vent exposure of polling to security violations by malicious
parties. In particular, we need to ensure authenticity of ser-
vents acting as offerers or voters (i.e., preventing imperson-
ation) and the quality of the poll. Ensuring the quality of the
poll means ensuring the integrity of each single vote (e.g.,
detecting modifications to votes in transit) and rule out the
possibility of dummy votes expressed by servents acting as
a clique under the control of a single malicious party. In
Section 2.2 we describe how these issues are addressed in
our protocol.

2.1. Notations in SupRep

Our protocol assumes the use of public key encryption to
provide integrity and confidentiality of message exchanges.
Whether permanent or fresh at each interaction, we require
each serventID to be a digest of a public key, obtained using
a secure hash function and for which the servent knows the
corresponding private key. This assumption allows a peer
talking to a serventID to ensure that its counterpart knows
the private key. A pair of keys is also generated on the fly for
each poll. In the following we will use (PKi,SKi) to denote
a pair of public and private keys associated with i, where i
can be a servent or a PollRequest. We use {M}K to de-
note the encryption of a message M under key K . Also, in
illustrating the protocol, we will use p to denote the proto-
col’s initiator, S to denote the set of servents connected to
the P2P network at the time p sends the Query, O to denote
the subset of S responding to the Query (offerers), V to de-
note the subset of S responding to p’s polling (voters), U to
denote the set of UltraPeers and R to denote the set of re-
peaters. A message transmission from servent x to servent
y via the P2P network will be represented as x−→y, where
“∗” appears instead of y in the case of a broadcast transmis-
sion. A direct message transmission (outside the P2P net-
work) from servent x to servent y will be represented as
x

D−→y.

2.2. Working of the SupRep protocol

The polling protocol, illustrated in Figure 1, works as
follows.

Like in the conventional Gnutella protocol, the servent
p looking for a resource sends a Query indicating the re-

source it is looking for. Every servent receiving the Query
and willing to offer the requested resource for download,
sends back a QueryHit message stating how it satisfies the
Query (i.e., number of files matching the query, the set of
responses, and the speed in Kb/second) and providing its
serventID and its pair 〈IP,port〉, which p can use for down-
loading. Then, p selects its top list of servents T and polls
its peers about the reputations of these servents. In the Poll-
Request, p includes the set T of serventIDs about which
it is inquiring and a public key PKpoll generated on the fly
for the PollRequest, with which responses to the poll will
need to be encrypted.3 The PollRequest is sent through the
P2P network like the Query request and therefore p does
not need to disclose its serventID or its IP to be able to re-
ceive back the response.

A servent receiving the PollRequest and wishing to ex-
press an opinion on any of the servents in T can do so by
responding to the PollRequest with a PollReply message
which contains the required information encrypted with the
PKpoll. The encrypted payload contains the pair 〈IP,port〉,
serventID, public key of the responding host, its votes,
PKpoll, and a signature. Note that the key PKpoll in the Poll-
Reply message has the role of a “poll session identifier”.
In this way, a malicious peer cannot collect “old” PollRe-
ply messages and resend them in correspondence of a new
polling. Super-peers in SupRep are assigned the responsi-
bility to wait for a timeout for the PollReply messages com-
ing from the leaf nodes in their cluster. The super-peers then
synthesize a CumulativePollReply message containing the
encrypted votes of their leafs for a corresponding PollRe-
quest along with its own encrypted votes. The super-peers
then forward this CumulativePollReply message to the
poll requestor.

The fact that the votes are encrypted with PKpoll protects
their confidentiality and allows the detection of integrity vi-
olations. Therefore, as a consequence of the poll, p receives
a set of votes, where, for each servent in T, some votes can
express a good opinion while some others can express a bad
opinion.

To base its decision on the votes received, p needs to
trust the reliability of the votes. Thus, p first uses decryption
to detect tampered with votes and discards them. Second,
p detects votes that appear suspicious, for example since
they are coming from IPs suspected of representing a clique.
Third, p selects a set of voters that it directly contacts (by us-
ing the 〈IP,port〉 pair they provided) to check whether they
actually expressed that vote. For each selected voter vj , p
directly sends a TrueVote request reporting the votes it has
received from vj , and expects back a confirmation message
TrueVoteReply from vj confirming the validity of the vote

3 In principle, p’s key could be used for this purpose, but this choice
would disclose the fact that the request is coming from p.

2

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



Initiator p UltraPeers U, servents s

p−→∗ �Query(search string,min speed)

si−→p, (∀si ∈ O)
QueryHit(num hits,IP,port,speed,Result,servent id i)�

Select top list T of offerers
Generate a pair (PKpoll ,SKpoll)

p−→∗ �PollRequest(T,PKpoll )

�CumulativePollReply({(PKi, IP, port, votes, PKpoll, servent idi, sgn)}PKpoll ,...)
vi−→p, (∀vi ∈ U)

(a)

Remove suspicious voters from set V
Select a random set V ′ from the elected voters/clusters

p
D−→vj, (∀vj ∈ V ′)

�TrueVote(Votesj)

vj
D−→p, (∀vj ∈ V ′)� TrueVoteReply(response)

If response is negative, discard Votesj

Based on valid votes select servent s from which
download files (b)

p−→vj, (∀vj ∈ V ′) �PushVote(servent id, IP, port,{TrueVote}PKvj
)

vj
D−→p, (∀vj ∈ V ′)

� TrueVoteReply(response)

(c)

p−→vj, (∀vj ∈ V ′) �

connection �
TrueVoteReply((IP, Port)PKvj

, response)�

PushVote(servent id, (IP, port)r ,TrueVote)

vj
D−→r, (∀vj ∈ V ′), ∀r ∈ R

�

repeater r

TrueVoteReply((IP, Port)PKvj
, response)

(d)
Initiator p Servent s

Generate a random string r

p
D−→s

�challenge(r)

s
D−→p

response([r]SKs ,PKs)�
If h(PKs )=servent ids ∧ {[r]SKs}PKs = r: download

Update experience repository
(e)

Figure 1. SupRep protocol: query and poll (a), vote verification (b)-(d), and resource download (e)

(see Figure 1(b)). If any of the poll requestor or poller is
behind the firewall, then the push verification and repeater
mechanism as described in Section 3 is followed. The vote
verification mechanism forces potential malicious servents
to pay the cost of using real IPs as false witnesses. Note
that of course nothing forbids malicious servents to com-
pletely throw away the votes in transit (but if so, they could
have done this blocking on the QueryHit in the first place).
Also note that servents will not be able to selectively dis-
card votes, as their recipient is not known and their content,
being encrypted with PKpoll is not visible to them. Upon as-
sessing correctness of the votes received, p can finally select
the offerer it judges as its best choice according to i) con-
nection speed, ii) its own reputation about the servents, iii)
the reputation expressed in the votes received, and iv) the
credibility associated with voters which it will use to prop-
erly weigh the votes they express when responding to a Poll-
Request.

At this point, before actually initiating the download, p
challenges the selected offerer s to assess whether it cor-

responds to the declared serventID. Servent s will need
to respond with a message containing its public key PKs

and the challenge signed with its private key SKs. If the
challenge-response exchange succeeds and the PKs’s digest
corresponds to the serventID that s has declared, then p will
know that it is actually talking to s. Note that the challenge-
response exchange is done via direct communication, like
the download, in order to prevent impersonation by which
servents can offer resources using the serventID of other
peers. With the authenticity of the counterpart established,
p can initiate the download and, depending on its satisfac-
tion for the operation, update the reputation associated with
s and stored in a repository called experience repository.

3. The vote verification mechanism and the
role of repeaters

The vote verification mechanism is performed in two dif-
ferent ways depending on whether the poll requestor and the
poller are behind a firewall or not. Consider the scenario il-

3

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



Supernodes

gnutella
network

A

Firewall

R

S

B

Figure 2. Gnutella Network Topology with re-
peaters

lustrated in Figure 2, where A is the poll requestor and B is
the poller.

Case 1: A is not behind a firewall and B is behind a fire-
wall (see Figure 1(c)).
To create the PushVote request the Gnutella Push mes-
sage is modified and sent through the Gnutella network
to reach B and to start a Push connection from B to A.
The PushVote request is sent along the same path fol-
lowed by the PollReply. The PushVote request must let
B know that someone with the specified serventID wants
B to start a PushVerification and reply to the TrueVote
message. The PushVote request contains the serventID, IP
address and port of A, a special identifier with the mean-
ing “connect to me” and the encrypted TrueVote request
(i.e., encrypted with the public key of the poller, which it
sent in the PollReply). The poller B retrieves the TrueVote
from the PushVote request, decrypts it and builds the
TrueVoteReply and connects to the IP address and port
specified in the message. After B sets up a TCP Connec-
tion to A, exchange of headers takes place to confirm if ev-
erything is ready for the verification. The poller B shows an
Identifier confirming about his identity connection key. The
connection key has been chosen to be a random value rnd
together with the pair (serventID(A), serventID(B)). The
Identifier used is unique for each vote verification.

Case 2: A and B are both behind a firewall (see Fig-
ure 1(d)).
This mechanism requires a reachable node in the middle
of the network for managing the connections needed for
the push verification. We call this node repeater because
its work is to repeat the message from the poller to the
poll requestor. Essentially, the role of the repeater is to cor-
rectly retrieve the TrueVoteReply from the poller and pass
it to the poll requestor with the public IP address and port
of the poller. More precisely, a repeater session includes the
following steps:

1. Repeater accepts a connection from A giving a confir-
mation about its availability

2. Repeater retrieves the array (rnd,(serventID(A)) (ser-
ventID(B))). This is the identifier of the repeater ses-
sion.

3. Repeater saves the attributes describing the repeater
session in a connection list, to verify if the incoming
check connection was the one it was waiting for.

4. Repeater sets a timeout for poller connection B, i.e.,
the maximum time to wait for the poller B to connect.

5. Repeater retrieves the connection key on connecting
with the poller B.

6. Repeater controls that the connection key passed is the
one the poll requestor A asked for; if not, it closes the
connection and waits for another connection, until the
timeout.

7. Repeater retrieves the repeater session, saves IP ad-
dress and port number of the poller B.

8. Repeater reads the TrueVoteReply from B and sends
it to A.

9. Repeater passes the previously saved IP address and
the port to A.

When the data is correctly passed to A, the repeater re-
moves the connection identifier from the connection list. A
repeater session may return a positive response, a negative
response, or a connecting error.

3.1. Selection of repeaters

A node in the network which wants to become a repeater
should satisfy the following requirements:

1. It should not be protected by any firewall (at least not
on the port on which it is listening to) or NAT, because
it must be reachable by every node on the network.

2. It must have sufficient bandwidth and process-
ing power to manage the many connections deriving
from being a repeater

The reputation in the internal repository of the repeater
candidates can be used in this choice, but a random choice
should also be effective, given the redundancy-based pro-
tection measures that the protocol envisions.

More than one repeater is needed in order to have suf-
ficient redundancy and security. Each repeater is indepen-
dent in its work and there are multiple ways to operate: par-
allel, serial, or mixed. The idea is to use a classical principle
of distributed systems, where N participants are considered
and it is required to have an agreement on at least the abso-
lute majority of them, to contrast possibly malicious nodes
(in our implementation, we assume N = 3).

4

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



4. Attacks to the vote verification mechanism

The first innovation we introduced in SupRep, the con-
struction of CumulativePollReply messages, has no im-
pact on the security evaluation of the protocol. As SupRep
extends P2PRep it is robust against pseudospoofing, ID-
Stealth, and shilling attacks. The introduction of repeaters
instead introduces several aspects that need to be evaluated.
The result of this analysis is that the vote verification mech-
anism is robust against attacks from malicious nodes.

4.1. Case 1: A is not behind a firewall and B is be-
hind a firewall

Attacks may come only from the nodes that are on the
path that the Push message follows from the poll requestor
A to the poller B. These nodes also saw the PollRe-
quest/PollReply exchange in addition to the current
PushVote request. A malicious node M can have no-
ticed that (1) A has launched a PollRequest; (2) an
unknown node (since serventID of the poller is en-
crypted in the PollReply) replied to the PollRequest from
the part of the network where the PollReply came from;
and (3) A is trying a PushVerification on the same ser-
vent (poller B) that replied to the poll (in the Push message
there is the same serventID as in the PollReply). The ma-
licious node M cannot make a selection of PushVote re-
quests based upon the servents involved, since M does not
know who the poller B is. Therefore, malicious node M can-
not block verification of nodes whose vote M does not
want to be verified. The malicious node M can block ev-
ery PushVote message it sees, but this will only limit
the ability of A to verify the votes originating in the por-
tion of the Gnutella network beyond the malicious node
M. Then, M could also have blocked the votes as they
were flowing back to A and this is unavoidable, be-
cause the poll requestor cannot choose the path for the
PollRequest message.

If the malicious node M was able to access the content
of the PollReply, he would get the serventID of the poller
B, and then M would see the PushVote message to retrieve
the serventID A. This way, malicious node M would have
the connection key and could connect to the poll requestor
A, which could not distinguish this from the real connec-
tion from poller B. But, PollReply messages are encrypted
and we assume that M cannot break the encryption and se-
riously endanger the protocol.

Thus, the push verification protocol is resistant to the
above attack.

4.2. Case 2: A and B are both behind a firewall

Compared with Case 1, we have here to consider the ad-
ditional situation when the repeater R itself is malicious.
The repeater R knows the serventIDs of A and B and that
the poll requestor A needs to verify a vote expressed by
the poller B. The repeater reads a TrueVoteReply mes-
sage from B (which is not encrypted) and passes it with
the IP address and the port of the poller B. The repeater R
can disconnect to abort the verification process. The pro-
tection against this attack is given by the use of multiple
repeaters and by the adoption of a careful selection of re-
peaters by the poll requestor A.

5. Conclusions

We have shown the design and implementation of a
SupRep aware servent. The protocol is an extension of the
P2PRep protocol that considers the presence of super-peers
and firewalls in P2P networks. We have also presented a
strategy, based on repeater nodes, overcoming the obstacles
that firewalls imposes to the vote verification phase.

Acknowledgments

We thank Gianluca Magni and Ivan Piasini for their con-
tribution to the implementation of the system demonstrating
the protocol. This work was supported in part by the Euro-
pean Union within the PRIME Project in the FP6/IST Pro-
gramme under contract IST-2002-507591 and by the Italian
MIUR within the KIWI and MAPS projects.

References

[1] K. Aberer and Z. Despotovic. Managing trust in a peer-
2-peer information system. In Proc. CIKM 2001, Atlanta,
Georgia, November 2001.

[2] S. Bellovin. Security aspects of Napster and Gnutella. In
Proc. USENIX 2001, Boston, June 2001.

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. Managing and sharing servents’ reputations in
P2P systems. IEEE TKDE, 15(4):840–854, July 2003.

[4] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,
P. Samarati, and F. Violante. A reputation-based approach
for choosing reliable resources in peer-to-peer networks. In
Proc. 9th ACM CCS, Washington, DC, USA, Nov. 2002.

[5] Gnutella. http://rfc-gnutella.sourceforge.net/.
[6] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The

eigentrust algorithm for reputation management in P2P net-
works. In Proc. WWW 2003, 2003.

[7] L. Xiong and L. Liu. Building trust in decentralized peer-
to-peer electronic communities. In Proc. 5th Conf. on Elec-
tronic Commerce Research (ICECR-5), 2002.

[8] B. Yang and H. Garcia-Molina. Designing a super-peer net-
work. In Proc. IEEE ICDE, March 2003.

5

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 


	footer1: 


