Netizen, Authentication and Reputation

Shalendra Chhabra University of California, Riverside <u>http://www.cs.ucr.edu/~schhabra</u> <u>http://www.spam-research.com</u> <u>schhabra@cs.ucr.edu</u> Slides at: www.cs.ucr.edu/~schhabra/ceas05.pdf

Venue: CEAS 2005, Stanford University Thanks to Joshua Goodman, Microsoft Research

Spammers and Phishers

<u>We Have A SwAK (Swiss Army Knife)</u> in <u>The Making</u> ☺

Anti Spammers

Our SWaK for Tackling Spam and Phishing

<u>Masters Thesis* (Advisor Dimitrios Gunopulos, UCR)</u> "Fighting Spam, Phishing and E-mail Fraud"

And Some Other Things For / With My University

Netizen, Authentication and Reputation July 21, CEAS 2005 Stanford University

A Unified Model of Spam Filtration MIT Spam Conference, 2005*

Netizen, Authentication and Reputation July 21, CEAS 2005 Stanford University

Authentication and Authorization

- Authentication is the process of checking or verifying an entity using some form of integrity information such as an authorization policy.
- Cisco's IIM, Yahoo's DK, now DKIM, SPF, Microsoft's CallerID now SenderID

With Email Authentication Systems What's Going to Happen Next?

- Spammers are adept at deploying sender authentication technologies for domains they are not forging
- Timeliness /reputation of domain in place
- Spammers will send from non-forged addresses (Blacklisting is the solution)

State with Email Authentication Systems * (John Graham Cumming)

Stanford University

Attack(s) on Cisco's IIM (Before DKIM)

Netizen, Authentication and Reputation July 21, CEAS 2005 Stanford University

Check Possibility of These Attacks when using Third Party Reputation Services with Email Authentication Systems

- <u>PseduoSpoofing</u>: Forging great number of votes from a single node, giving them different IP addresses, and multiple IDs
- <u>Shilling</u>: Clique / Control over many participants affecting reputation
- <u>ID Stealth</u>: Malicious Agents respond in the same format as if generated from genuine servents (Challenge Response can detects this)
- <u>Replay Attack:</u> Use of Timestamps, Nonce

Reputation: Whats the Deal

- Reputation History, NewComer and Vouching Problem
- Reputation Format, Reputation Response with a Signature? (Accountability)
- Consistent Framework for accessing reputation required otherwise Chaos
- reputation@ironport.com

Phishing Attacks, Reputation

- Planning (Targets, Attack Methods)
- Setup (Destinations, Contacts)
- Attack (Attack Mediums via websites etc.)
- Collection (Forms, Malware, Social Engineering)
- Fraud (False Registrations) → Reputation
- Post- Attack (Destroying Evidence)

Reputation Engines and Architecture

Architecture

- Centralized Architecture
- Distributed Architecture Like SupRep*

Reputation Computation Engines

- Summation of Votes
- Bayesian Systems
- Discrete Trust Models
- Flow Models as Google's PageRank, Attack Resistant Trust Metrices (like Advogato)

*SupRep: Shalendra Chhabra etal, IEEE DEXA, 2004

Attributes, Reputation Query and Response Formats

- Issues: TCP vs UDP: Pros/Cons
- Scoring System in Reputation should be:
- Accurate for long term performance
- Should have a weight towards current participant behaviour and should reflect the score/opinion of its participants
- Should be efficient and convenient to recalculate a score quickly
- Should be robust against attacks
- Should be amenable for statistical evaluations
- Should be smooth, easy to verify if required (depends)
- Scores should imply an attribute that requestor can interpret/understand (depends upon the context)

More Design Issues... Food for Thought

- Reputation Repository
- Registration, Reputation Lookup and Update Formats
- The Reputation protocol designers should prove the protocol robust in the presence of "good, confused and bad participants"
- The protocol should allow for updates during events like entry/exit of reputation servers (if it has a distributed architecture) Ex: SupRep*

SupRup: Shalendra Chhabra etal. Italy – Spain Summer 2004

Some Lessons from the Past

- Always think about the possibility of DNS Poisoning in Caches (Refer Using the Domain Name System for System Break-ins - Bellovin)
- IP Spoofing Attacks
- DoS Attacks
- Some other Ideas ex: using the information for the compromised machines and servers (in Zombie Zones)

Spam Free, Phish Free, Reputed Safe Net?

Bad Reputation

