
Predicting the Effectiveness of Keyword Queries on
Databases

Shiwen Cheng
Department of Computer
Science & Engineering

University of California at
Riverside

Riverside, CA 92507. USA
schen064@cs.ucr.edu

Arash Termehchy
Department of Computer

Science
University of Illinois at
Urbana-Champaign

Urbana, IL 61801. USA
termehch@uiuc.edu

Vagelis Hristidis
Department of Computer
Science & Engineering

University of California at
Riverside

Riverside, CA 92507. USA
vagelis@cs.ucr.edu

ABSTRACT
Keyword query interfaces (KQIs) for databases provide easy
access to data, but often suffer from low ranking quality, i.e.
low precision and/or recall, as shown in recent benchmarks.
It would be useful to be able to identify queries that are
likely to have low ranking quality to improve the user sat-
isfaction. For instance, the system may suggest to the user
alternative queries for such hard queries. In this paper, we
analyze the characteristics of hard queries and propose a
novel framework to measure the degree of difficulty for a
keyword query over a database, considering both the struc-
ture and the content of the database and the query results.
We evaluate our query difficulty prediction model against
two relevance judgment benchmarks for keyword search on
databases, INEX and SemSearch. Our study shows that our
model predicts the hard queries with high accuracy. Further,
our prediction algorithms incur minimal time overhead.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

General Terms
Measurement, Performance

Keywords
Query Performance, Keyword Query, (Semi-)Structured Data,
Database

1. INTRODUCTION
Keyword query interfaces (KQIs) for databases have at-

tracted much attention in the last decade due to their flex-
ibility and ease of use in searching and exploring databases
[2, 10, 5, 19, 16, 12]. Since any entity in a data set that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$10.00.

contains the query keywords is a potential answer, keyword
queries typically have many possible answers. KQIs must
identify the information needs behind keyword queries and
rank the answers so that the desired answers appear at the
top of the list [2, 10]. Unless otherwise noted, we refer to
keyword query as query in the remainder of this paper.

Databases contain entities, and entities contain attributes
that take attribute values. Some of the difficulties of answer-
ing a query are as follows: First, unlike queries in languages
like SQL, users do not normally specify the desired schema
element(s) for each query term. For instance, query Q1:
Godfather on the IMDB database (http://www.imdb.com)
does not specify if the user is interested in movies whose
title is Godfather or movies distributed by the Godfather
company. Thus, a KQI must find the desired attributes as-
sociated with each term in the query. Second, the schema
of the output is not specified, i.e., users do not give enough
information to single out exactly their desired entities [13].
For example, Q1 may return movies or actors or produc-
ers. We present a more complete analysis of the sources of
difficulty and ambiguity in Section 4.2.

Recently, there have been collaborative efforts to provide
standard benchmarks and evaluation platforms for keyword
search methods over databases. One effort is the data-
centric track of INEX Workshop [22] where KQIs are evalu-
ated over the well-known IMDB data set that contains struc-
tured information about movies and people in show business.
Queries were provided by participants of the workshop. An-
other effort is the series of Semantic Search Challenges (Sem-
Search) at Semantic Search Workshop [21], where the data
set is the Billion Triple Challenge data set at
http://vmlion25.deri.de. It is extracted from different struc-
tured data sources over the Web such as Wikipedia. The
queries are taken from Yahoo! keyword query log. Users
have provided relevance judgments for both benchmarks.

The Mean Average Precision (MAP) of the best perform-
ing method(s) in the last data-centric track in INEX Work-
shop and Semantic Search Challenge for queries are about
0.36 and 0.2, respectively. The lower MAP values of meth-
ods in Semantic Search Challenge are mainly due to the
larger size and more heterogeneity of its data set.

These results indicate that even with structured data,
finding the desired answers to keyword queries is still a hard
task. More interestingly, looking closer to the ranking qual-
ity of the best performing methods on both workshops, we
notice that they all have been performing very poorly on a

subset of queries. For instance, consider the query ancient
Rome era over the IMDB data set. Users would like to see
information about movies that talk about ancient Rome.
For this query, the state-of-the-art XML search methods
which we implemented return rankings of considerably lower
quality than their average ranking quality over all queries.
Hence, some queries are more difficult than others. More-
over, no matter which ranking method is used, we cannot
deliver a reasonable ranking for these queries. Table 1 lists
a sample of such hard queries from the two benchmarks.
Such a trend has been also observed for keyword queries
over text document collections [20]. These queries are usu-
ally either under-specified, such as query carolina in Table 1,
or over-specified, such as query Movies Klaus Kinski actor
good rating in Table 1.

Table 1: List of difficult queries from both benchmarks.

INEX SemSearch
ancient rome era austin texas
Movies Klaus Kinski actor good rating carolina
true story drugs addiction earl may

lynchburg virginia
san antonio

It is important for a KQI to recognize such queries and
warn the user or employ alternative techniques like query
reformulation or query suggestions [15]. It may also use
techniques such as diversification of its returned ranked list
[4]. On the other hand, if a KQI would employ these tech-
niques for queries with high-quality results, it may hurt their
quality and/or waste computational resources (such as CPU
cycle) and the time of users. Hence, it is important that a
KQI distinguishes difficult from easy queries and act upon
them accordingly (the latter is out of the scope of this work).
As a specific example of how knowledge of the query diffi-
culty may be leveraged, consider Figure 1 which shows the
ranking results for query ancient Rome era by one of our
implemented ranking algorithms (details in Section 7). Our
algorithms determine that this is a hard (ambiguous) query,
which guides the system to generate query reformulation
suggestions. Note that the generation of query reformula-
tion technique is beyond our scope in this paper.

Figure 1: Results for hard query ancient Rome era by our
system with query suggestions returned.

To the best of our knowledge, there has not been any
work on predicting or analyzing the difficulties of queries
over databases. Researchers have proposed some methods to
detect difficult queries over plain text document collections
[20, 24]. However, these techniques are not applicable to
our problem since they ignore the structure of the database.
In particular, as mentioned earlier, a KQI must assign each
query term to a schema element(s) in the database. It must
also distinguish the desired result type(s). We experimen-
tally show that direct adaptations of these techniques are
ineffective for structured data.

In this paper, we analyze the characteristics of difficult
queries over databases and propose a novel method to detect
such queries. We take advantage of the structure of the data
to gain insight about the degree of the difficulty of a query
given the database. We have implemented some of the most
popular and representative algorithms for keyword search
on databases and used them to evaluate our techniques on
both the INEX and SemSearch benchmarks. The results
show that our method predicts the degree of the difficulty
of a query efficiently and effectively.

We make the following contributions:

• We introduce the problem of predicting the degree of the
difficulty for queries over databases. We also analyze the
reasons that make a query difficult to answer by KQIs.

• We propose the Structured Robustness (SR) score, which
measures the difficulty of a query based on the differences
between the rankings of the same query over the origi-
nal and noisy (corrupted) versions of the same database,
where the noise spans on both the content and the struc-
ture of the result entities.

• We introduce efficient algorithms to compute the SR
score, given that such a measure is only useful when it
can be computed with a small cost overhead compared
to the query execution cost.

• We show the results of extensive experiments using two
standard data sets and query workloads: INEX and Sem-
Search. Our results show that the SR score effectively
predicts the ranking quality of representative ranking al-
gorithms, and outperforms non-trivial baselines, intro-
duced in this paper. Also, the time spent to compute
the SR score is negligible compared to the query execu-
tion time.

In the remainder of the paper, Section 2 discusses re-
lated work and Section 3 presents basic definitions. Sec-
tion 4 explains the ranking robustness principle and ana-
lyzes the properties of difficult queries over databases. Sec-
tion 5 presents concrete methods to compute the SR score in
(semi-) structured data. Section 6 describes the algorithms
to compute the SR score. Section 7 contains the experimen-
tal results, and Section 8 concludes the paper.

2. RELATED WORK
In this section we present an overview of the works on

predicting the query difficulty in free text collections and
explain why they generally cannot be applied to our setting.
Researchers have proposed methods to predict hard queries
over unstructured text documents [20, 24, 9, 3]. Some meth-
ods use the statistical properties of the terms in the query to
predict its difficulty. Examples of such statistical character-
istics are average inverse document frequency of the terms

Figure 2: IMDB database fragment

in the query and number of documents that contain at least
one query term [9]. The common idea behind these meth-
ods is that the more discriminative the query terms are, the
easier the query will be. Empirical evaluations indicate that
these methods have limited prediction accuracies [20].
A popular approach called clarity score argues that an

easy query is sufficiently distinctive to separate the user’s de-
sired documents from other documents in the collection [20,
3]. Hence, its top ranked answers belong to very few topics
that are very likely to be the desired topics. On the other
hand, the top ranked documents of a difficult query describe
various topics, which many of them are irrelevant to the
user’s information need. Consider a set of documents that
contain the information about different types of news. The
top ranked documents of query European financial crises
are mainly about financial news, but the top ranked an-
swers for query European crises may describe several topics
such as political, financial, and social news. The latter is
more difficult than the former. Researchers have shown that
this method provides a better estimation of the difficulty of
a query for text documents than clues such as number of
terms in the query or inverse document frequencies of its
terms [20]. In order to measure the number of topics in the
top ranked document of a given query, some systems com-
pare the probability distribution of terms in the returned
documents with the probability distribution of terms in the
whole collection. If these probability distributions are rela-
tively similar, the top ranked documents contain the infor-
mation about almost as many topics as the whole collection,
thus, the query is difficult [20].
Each topic in a database contains the entities that are

about a similar subject. It is generally hard to define a for-
mula that partitions entities into topics as it requires finding
an effective similarity function between entities. Such sim-
ilarity function depends mainly on the domain knowledge
and understanding users’ preferences [8]. For instance, dif-
ferent attributes may have different impacts on the degree
of the similarity between entities. Assume movies A and B
share some terms in their genre attributes, which explain
the subjects of the movies, in IMDB database. Also, let
movies A and C share the same number of terms in their
distributor attributes, which describe the distribution com-
pany of the movies. Given other attributes of A, B, and
C do not contain any common term, movies A and B are
more likely to be about the same subject and satisfy the
same information need than movies A and C. Our empir-
ical results in Section 7 confirms this argument and shows
that the straightforward extension of clarity score method
predicts difficulties of the queries over databases poorly.
Some systems use a pre-computed set of topics and assign

each document to at least one topic in the set in order to
compute the clarity score [3]. They compare the probability

distribution of topics in the top ranked documents with the
probability distribution of topics of the whole collection to
predict the degree of the difficulty of the query. One requires
domain knowledge about the data sets and its users to cre-
ate a set of useful topics for the tuples in the database. We
like to find an effective and domain independent approach
to predict the difficulties of queries. Some methods use ma-
chine learning techniques to learn the properties of difficult
queries and predict them [23]. They have similar limita-
tions as the other approaches when applied to structured
data. Moreover, their applications depend on the amount
and quality of the training data. Sufficient and high quality
training data is not normally available for many databases.

3. DATA AND QUERY MODELS
We model a database as a set of entity sets. Each entity

set S is a collection of entities E. For instance, movies and
people are two entity sets in IMDB. Figure 2 depicts a frag-
ment of a data set where each subtree whose root’s label is
movie represents an entity. Each entity E has a set of at-
tribute values Ai, 1 ≤ i ≤ |E|. Each attribute value is a bag
of terms. Following current unstructured and (semi-) struc-
ture retrieval approaches, we ignore stop words that appear
in attribute values, although this is not necessary for our
methods. Every attribute value A belongs to an attribute T
written as A ∈ T . For instance, Godfather and Mafia are
two attribute values in the movie entity shown in the subtree
rooted at node 1 in Figure 2. Node 2 depicts the attribute
of Godfather, which is title.

The above is an abstract data model. We ignore the
physical representation of data in this paper. That is, an
entity could be stored in an XML file or a set of normal-
ized relational tables. The above model has been widely
used in works on entity search [17, 6] and data-centric XML
retrieval [22], and has the advantage that it can be easily
mapped to both XML and relational data. Further, if a KQI
method relies on the intricacies of the database design (e.g.
deep syntactic nesting), it will not be robust and will have
considerably different degrees of effectiveness over different
databases [18]. Hence, since our goal is to develop princi-
pled formal models that cover reasonably well all databases
and data formats, we do not consider the intricacies of the
database design or data format in our models.

A keyword query is a set Q = {q1 · · · q|Q|} of terms, where
|Q| is the number of terms in Q. An entity E is an answer
to Q iff at least one of its attribute values A contains a term
qi in Q, written qi ∈ A1. Given database DB and query Q,
retrieval function g(E,Q,DB) returns a real number that re-
flects the relevance of entity E ∈ DB to Q. Given database
DB and query Q, a keyword search system returns a ranked
list of entities in DB called L(Q, g,DB) where entities E
are placed in decreasing order of the value of g(E,Q,DB).

4. RANKING ROBUSTNESS PRINCIPLE FOR
STRUCTURED DATA

In this section we present the Ranking Robustness Prin-
ciple, which argues that there is a (negative) correlation
between the difficulty of a query and its ranking robust-

1Some works on keyword search in databases [10] use con-
junctive semantics, where all query keywords must appear
in a result.

ness in the presence of noise in the data. Section 4.1 dis-
cusses how this principle has been applied to unstructured
text data. Section 4.2 presents the factors that make a key-
word query on structured data difficult, which explain why
we cannot apply the techniques developed for unstructured
data. The latter observation is also supported by our experi-
ments in Section 7.2 on the Unstructured Robustness Method
[24], which is a direct adaptation of the Ranking Robustness
Principle for unstructured data.

4.1 Background: Unstructured Data
Mittendorf has shown that if a text retrieval method ef-

fectively ranks the answers to a query in a collection of text
documents, it will also perform well for that query over the
version of the collection that contains some errors such as re-
peated terms [14]. In other words, the degree of the difficulty
of a query is positively correlated with the robustness of its
ranking over the original and the corrupted versions of the
collection. We call this observation the Ranking Robustness
Principle. Zhou and Croft [24] have applied this principle
to predict the degree of the difficulty of a query over free
text documents. They compute the similarity between the
rankings of the query over the original and the artificially
corrupted versions of a collection to predict the difficulty of
the query over the collection. They deem a query to be more
difficult if its rankings over the original and the corrupted
versions of the data are less similar. The have empirically
shown their claim to be valid. They have also shown that
this approach is generally more effective than using methods
based on the similarities of probability distributions, that we
reviewed in Section 2. This result is especially important for
ranking over databases. As we explained in Section 2, it is
generally hard to define an effective and domain independent
categorization function for entities in a database. Hence, we
can use Ranking Robustness Principle as a domain indepen-
dent proxy metric to measure the degree of the difficulties
of queries.

4.2 Properties of Hard Queries on Databases
As discussed in Section 2, it is well established that the

more diverse the candidate answers of a query are, the more
difficult the query is over a collection of the text documents.
We extend this idea for queries over databases and pro-
pose three sources of difficulty for answering a query over
a database as follows:

1. The more entities match the terms in a query, the more
diverse the candidate answers for the query are and
it is harder to answer properly. For example, there
are more than one person called Ford in the IMDB
data set. If a user submits query Q2: Ford, a KQI
must resolve the desired Ford that satisfy the user’s
information need. As opposed to Q2, Q3: Spielberg
matches smaller number of people in IMDB, so it is
easier for the KQI to return its relevant results.

2. Each attribute describes a different aspect of an entity.
If a query matches different attributes in its candidate
answers, it will have a more diverse set of potential
answers in database. For instance, some candidate an-
swers for query Q4: Godfather in IMDB contain its
term in their title and some contain its term in their
distributor. For the sake of this example, we ignore

other attributes in IMDB. A KQI must identify the de-
sired matching attribute for Godfather to find its rele-
vant answers. As opposed to Q4, query Q5: taxi driver
does not match any instance of attribute distributor.
Hence, a KQI already knows the desired matching at-
tribute for Q5 and has an easier task to perform. The
kind of difficulty introduced by this type of diversity is
different from the kind of difficulty created by having a
large number of matched entities. Assume that Q4 and
Q5 have almost equal number of answers. Some of the
movies whose titles match Q5 are related, e.g., there
are three documentaries in IMDB whose titles match
taxi driver, which are about making the well-known
movie taxi driver directed by Martin Scorsese. They
may partially or fully satisfy the information need be-
hind Q5. However, the candidate answers whose title
attribute match Q4 and the candidate answers whose
distributor attribute match Q4 are not generally re-
lated.

3. Each entity set contains the information about a differ-
ent type of entities. Hence, if a query matches entities
from more entity sets, it will have more diverse set
of candidate answers. For instance, IMDB contains
the information about movies in an entity set called
movie and the information about the people involved
in making movies in another entity set called person.
Consider query Q6: divorce over IMDB data set whose
candidate answers come from both entity sets. A KQI
has a difficult task to do as it has to identify if the
information need behind this query is to find people
who got divorced or movies about divorce. In contrast
to Q6, Q7: romantic comedy divorce matches only en-
tities from movie entity set. It is less difficult for a
KQI to answer Q7 than Q6 as Q6 has only one possi-
ble desired entity set. This kind of diversity poses a
new type of difficulty. since the candidate answers of
Q6 are about romantic comedy movies about divorce,
they have some similarities to each other. However,
movies about divorce and people who get divorced can-
not both satisfy information need of query Q6. Given
Q6 and Q7 have almost the same number of candi-
date answers and matching attributes, it is likely that
more candidate answers of Q6 are relevant to its users’
information need than the candidate answers to Q7.

The aforementioned observations show that we may use
the statistical properties of the query terms in the database
to compute the diversity of its candidate answers and predict
its difficulty. One idea is to count the number of possible
attributes, entities, and entity sets that contain the query
terms and use them to predict the difficulty of the query.
The larger this value is the more difficult the query will
be. We have shown empirically in Section 7.2 that such ap-
proach predicts the difficulty of queries quite poorly. This
is because the distribution of query terms over attributes
and entity sets may also impact the difficulty of the query.
For instance, assume database DB1 contains two entity sets
book and movie and database DB2 contains entity sets book
and article. Let term database appear in both entity sets
in DB1 and DB2. Assume that there are far fewer movies
that contain term database compared to books and articles.
A KQI can leverage this property and rank books higher
than movies when answering query Q8: database over DB1.

However, it will be much harder to decide the desired entity
set in DB2 for Q8. Hence, a difficulty metric must take in to
account the skewness of the distributions of the query term
in the database as well. In Section 5 we discuss how these
ideas are used to create a concrete noise generation frame-
work that consider attribute values, attributes and entity
sets.

5. A FRAMEWORK TO MEASURE STRUC-
TURED ROBUSTNESS

In Section 4 we presented the Ranking Robustness Prin-
ciple and discussed the specific challenges in applying this
principle to structured data. In this section we present con-
cretely how this principle is quantified in structured data.
Section 5.1 discusses the role of the structure and content
of the database in the corruption process, and presents the
robustness computation formula given corrupted database
instances. Section 5.2 provides the details of how we gener-
ate corrupted instances of the database. Section 5.3 suggests
methods to compute the parameters of our model. In Sec-
tion 5.4 we show real examples of how our method corrupts
the database and predicts the difficulty of queries.

5.1 Structured Robustness
Corruption of structured data. The first challenge in
using the Ranking Robustness Principle for databases is to
define data corruption for structured data. For that, we
model a database DB using a generative probabilistic model
based on its building blocks, which are terms, attribute val-
ues, attributes, and entity sets. A corrupted version of DB
can be seen as a random sample of such a probabilistic
model. Given a query Q and a retrieval function g, we
rank the candidate answers in DB and its corrupted ver-
sions DB′, DB′′, · · · to get ranked lists L and L′, L′′, · · · ,
respectively. The less similar L is to L′, L′′, · · · , the more
difficult Q will be.
According to the definitions in Section 3, we model database

DB as a triplet (S, T ,A), where S, T , and A denote the
sets of entity sets, attributes, and attribute values in DB,
respectively. |A|, |T |, |S| denote the number of attribute
values, attributes, and entity sets in the database, respec-
tively. Let V be the number of distinct terms in database
DB. Each attribute value Aa ∈ A, 1 ≤ a ≤ |A|, can
be modeled using a V-dimensional multivariate distribution
Xa = (Xa,1, · · · ,Xa,V), where Xa,j ∈ Xa is a random vari-
able that represents the frequency of term wj in Aa. The
probability mass function of Xa is:

fXa(x⃗a) = Pr(Xa,1 = xa,1, · · · , Xa,V = xa,V) (1)

where x⃗a = xa,1, · · · , xa,V and xa,j ∈ x⃗a are non-negative
integers.
Random variable XA = (X1, · · · , X|A|) models attribute

value set A, where Xa ∈ XA is a vector of size V that
denotes the frequencies of terms in Aa. Hence, XA is a
|A|× V matrix. The probability mass function for XA is:

fXA(x⃗) = fXA(x⃗1, · · · , ⃗x|A|) = Pr(X1 = x⃗1, · · · ,X|A| = ⃗x|A|)
(2)

where x⃗a ∈ x⃗ are vectors of size V that contain non-negative
integers. The domain of x⃗ is all |A|× V matrices that contain
non-negative integers, i.e. M(|A|× V).
We can similarly define XT and XS that model the set of

attributes T and the set of entity sets S, respectively. The

random variable XDB = (XA, XT , XS) models corrupted
versions of database DB. In this paper, we focus only on
the noise introduced in the content (values) of the database.
In other words, we do not consider other types of noise such
as changing the attribute or entity set of an attribute value
in the database. Since the membership of attribute values
to their attributes and entity sets remains the same across
the original and the corrupted versions of the database, we
can derive XT and XS from XA. Thus, a corrupted version
of the database will be a sample from XA; note that the
attributes and entity sets play a key role in the computation
of XA as we discuss in Section 5.2. Therefore, we use only
XA to generate the noisy versions of DB, i.e. we assume
that XDB = XA. In Section 5.2 we present in detail how
XDB is computed.

Structured Robustness calculation. We compute the
similarity of the answer lists using Spearman rank correla-
tion [7]. It ranges between 1 and -1, where 1, -1, and 0
indicate perfect positive correlation, perfect negative corre-
lation, and almost no correlation, respectively. Equation 3
computes the Structured Robustness score (SR score), for
query Q over database DB given retrieval function g:

SR(Q, g,DB,XDB) = E{Sim(L(Q, g,DB), L(Q, g,XDB))}

=
∑
x⃗

Sim(L(Q, g,DB), L(Q, g, x⃗))fXDB
(x⃗)

(3)

where x⃗ ∈ M(|A|× V) and Sim denotes the Spearman rank
correlation between the ranked answer lists.

5.2 Noise Generation in Databases
In order to compute Equation 3, we need to define the

noise generation model fXDB (M) for database DB. We will
show that each attribute value is corrupted by a combination
of three corruption levels: on the value itself, its attribute
and its entity set. Now the details: Since the ranking meth-
ods for queries over structured data do not generally consider
the terms in V that do not belong to query Q [10, 12], we
consider their frequencies to be the same across the origi-
nal and noisy versions of DB. Given query Q, let x⃗ be a
vector that contains term frequencies for terms w ∈ Q ∩ V .
Similarly to [24], we simplify our model by assuming the at-
tribute values inDB and the terms inQ∩V are independent.
Hence, we have:

fXA(x⃗) =
∏
xa∈x⃗

fXa(x⃗a). (4)

and

fXa(x⃗a) =
∏

xa,j∈x⃗a

fXa,j (xa,j). (5)

where xj ∈ x⃗i depicts the number of times wj appears in
a noisy version of attribute value Ai and fXi,j (xj) computes
the probability of term wj to appear in Ai xj times.

The corruption model must reflect the challenges discussed
in Section 4.2 about search on structured data, where we
showed that it is important to capture the statistical proper-
ties of the query keywords in the attribute values, attributes
and entity sets. We must introduce content noise (recall
that we do not corrupt the attributes or entity sets but
only the values of attribute values) to the attributes and

entity sets, which will propagate down to the attribute val-
ues. For instance, if an attribute value of attribute title con-
tains keyword Godfather, then Godfather may appear in any
attribute value of attribute title in a corrupted database in-
stance. Similarly, if Godfather appears in an attribute value
of entity set movie, then Godfather may appear in any at-
tribute value of entity set movie in a corrupted instance.
Since the noise introduced in attribute values will propa-

gate up to their attributes and entity sets, one may question
the need to introduce additional noise in attribute and entity
set levels. The following example illustrates the necessity to
generate such noises. Let T1 be an attribute whose attribute
values are A1 and A2, where A1 contains term w1 and A2

does not contain w1. A possible noisy version of T1 will
be a version where A1 and A2 both contain w1. However,
the aforementioned noise generation model will not produce
such a version. Similarly, a noisy version of entity set S must
introduce or remove terms from its attributes and attribute
values. According to our discussion in Section 4, we must
use a model that generates all possible types of noise in the
data.
Hence, we model the noise in a DB as a mixture of the

noises generated in attribute value, attribute, and entity set
levels. Mixture models are typically used to model how the
combination of multiple probability distributions generates
the data. Let Yt,j be the random variable that represents
the frequency of term wj in attribute Tt. Probability mass
function fYt,j (yt,j) computes the probability of wj to appear
yt,j times in Tt. Similarly, Zs,j is the random variable that
denotes the frequency of term wj in entity set Ss and prob-
ability mass function fZs,j (zs,j) computes the probability of
wj to appear zs,j times in Ss. Hence, the noise generation
models attribute value Ai whose attribute is Tt and entity
set is Ss:

f̂Xa,j (xa,j) = γAfXa,j (xa,j) + γT fYt,j (xt,j) + γSfZs,j (xs,j).
(6)

where 0 ≤ γA, γT , γS ≤ 1 and γA+γT +γS = 1. fXa,j , fYt,j ,
and fYs,j model the noise in attribute value, attribute, and
entity set levels, respectively. Parameters γA, γT and γS
have the same values for all terms w ∈ Q ∩ V and are set
empirically.
Since each attribute value Aa is a small document, we

model fXi,j as a Poisson distribution:

fXa,j (xa,j) =
e−λa,jλ

xa,j

a,j

xa,j !
. (7)

Similarly, we model each attribute Tt, 1 ≤ t ≤ |T |, as a bag
of words and use Poisson distribution to model the noise
generation in the attribute level:

fYt,j (xt,j) =
e−λt,jλ

xt,j

t,j

xt,j !
. (8)

Using similar assumptions, we model the changes in the fre-
quencies of the terms in entity set Ss, 1 ≤ s ≤ |S|, using
Poisson distribution:

fZs,j (xs,j) =
e−λs,jλ

xs,j

s,j

xs,j !
. (9)

In order to use the model in Equation 6, we have to esti-
mate λA,w, λT,w, and λS,w for every w ∈ Q ∩ V , attribute
value A, attribute T and entity set S in DB. We treat
the original database as an observed value of the space of

all possible noisy versions of the database. Thus, using the
maximum likelihood estimation method, we set the value of
λA,w to the frequency of w in attribute value A. Assuming
that w are distributed uniformly over the attribute values
of attribute T , we can set the value of λT,w to the average
frequency of w in T . Similarly, we set the value of λS,w as
the average frequency of w in S. Using these estimations,
we can generate noisy versions of a database according to
Equation 6.

5.3 Smoothing The Noise Generation Model
Equation 6 overestimates the frequency of the terms of the

original database in the noisy versions of the database. For
example, assume a bibliographic database of computer sci-
ence publications that contains attribute T2 =abstract which
constitutes the abstract of a paper. Apparently, many ab-
stracts contain term w2 =algorithm, therefore, this term
will appear very frequently with high probability in fT2,w2

model. On the other hand, a term such as w3 = Dirichlet
is very likely to have very low frequency in fT2,w3 model.
Let attribute value A2 be of attribute abstract in the bib-
liographic DB that contains both w2 and w3. Most likely,
term algorithm will appear more frequently than Dirichlet
in A2. Hence, the mean for fA2,w2 will be also larger than
the mean of fA2,w3 . Thus, a mixture model of fT2,w2 and
fA2,w2 will have much larger mean than a mixture model
of fT2,w3 and fA2,w3 . The same phenomenon occurs if a
term is relatively frequent in an entity set. Hence, a mix-
ture model such as Equation 6 overestimates the frequency
of the terms that are relatively frequent in an attribute or
entity set. Researchers have faced a similar issue in lan-
guage model smoothing for speech recognition [11]. We use
a similar approach to resolve this issue. If term w appear in
attribute value A, we use only the first term in Equation 6
to model the frequency of w in the noisy version of database.
Otherwise, we use the second or third terms if w belongs to
T and S, respectively. Hence, the noise generation model is:

f̂Xa,j (xa,j) =

 γAfXa,j (xa,j) if wj ∈ Aa

γT fYt,j (xt,j) if wj /∈ Aa, wj ∈ Tt

γSfZs,j (xs,j) if wj /∈ Aa, Tt, wj ∈ Ss

(10)
where we remove the condition γA + γT + γS = 1.

5.4 Examples
We illustrate the corruption process and the relationship

between the robustness of the ranking of a query and its
difficulty using INEX queries Q9: mulan hua animation and
Q11: ancient rome era, over the IMDB dataset. We set
γA = 1, γT = 0.9, γS = 0.8 in Equation 10. We use the
XML ranking method proposed in [12], called PRSM, which
we explain in more detail in Section 6. Given query Q,
PRSM computes the relevance score of entity E based on
the weighted linear combination of the relevance scores the
attribute values of E.

Example of calculation of λt,j for term t =ancient and
attribute Tj =plot in Equation 8: In the IMDB dataset,
ancient occurs in attribute plot 2132 times in total, and total
number of attribute values under attribute plot is 184,731,
λt,j = 2132/184731 which is 0.0115. Then, since γT = 0.9,
the probability that ancient occurs k times in a corrupted

plot attribute is 0.9e−0.0115(0.0115)k

k!
.

Q11: Figure 3a depicts two of the top results (ranked as

1st and 12nd respectively) for query Q11 over IMDB. We
omit most attributes (shown as elements in XML lingo in
Figure 3a) that do not contain any query keywords due to
space consideration. Figure 3b illustrates a corrupted ver-
sion of the entities shown in Figure 3a. The new keyword
instances are underlined. Note that the ordering changed
according to the PRSM ranking. The reason is that PRSM
believes that title is an important attribute for rome (for at-
tribute weighing in PRSM see Section 7.1) and hence having
a query keyword (rome) there is important. However, after
corruption, query word rome also appears in the title of the
other entity, which now ranks higher, because it contains the
query words in more attributes.
<movie id= “1025102”>
<title>rome ...</title>
<keyword>ancient-
world</keyword>
<keyword>ancient-art</keyword>
<keyword>ancient-rome</keyword>
<keyword>christian-era</keyword>
</movie>

<movie id=“1149602”>
<title>Gladiator</title>
<keyword>ancient-rome</keyword>
<character>Rome ...</character>
<person>... Rome/UK)</person>
<trivia>”Rome of the imagination...
</trivia>
<goof>Rome vs. Carthage
...</goof>
<quote>... enters Rome like a ...
Rome ... </quote>
</movie>

(a) Original ranking

<movie id=“1149602”>
<title> Gladiator rome</title>
<keyword>ancient-rome
rome</keyword>
<character>Rome ...</character>
<person> ... Rome/UK)</person>
<trivia>of the imagination
...</trivia>
<goof>Rome vs. Carthage ...</goof>
<quote>... enters Rome like a ...
Rome ...</quote>
</movie>

<movie id= “1025102”>
<title>rome ...</title>
<keyword>ancient-world
ancient</keyword>
<keyword>-art</keyword>
<keyword>ancient
ancient</keyword>
<keyword>christian-</keyword>
</movie>

(b) Corrupted ranking

Figure 3: Original and corrupted results of Q11

Word rome was added to the title attribute of the origi-
nally second result through the second level (attribute-based,
second branch in Equation 10) of corruption, because rome
appears in the title attribute of other entities in the database.
If no title attribute contained rome, then it could have been
added through the third level corruption (entity set-based,
third branch in Equation 10) since it appears in attribute
values of other movie entities.
The second and third levels corruptions typically have

much smaller probability of adding a word than the first
level, because they have much smaller λ; specifically λT is
the average frequency of the term in attribute T . However,
in hard queries like Q11, the query terms are frequent in the
database, and also appear in various entities and attributes,
and hence λT and λS are larger.
In the first keyword attribute of the top result in Figure 3b,

rome is added by the first level of corruption, whereas in
the trivia attribute rome is removed by the first level of
corruption.
To summarize, Q11 is difficult because its keywords are

spread over a large number of attribute values, attributes
and entities in the original database, and also most of the
top results have a similar number of occurrences of the key-
words. Thus, when the corruption process adds even a small
number of query keywords to the attribute values of the
entities in the original database, it drastically changes the
ranking positions of these entities.
Q9: Q9 (mulan hua animation) is an easy query because

most its keywords are quite infrequent in the database. Only
term animation is relatively frequent in the IMDB dataset,
but almost all its occurrences are in attribute genre. Fig-
ures 4a and 4b present two ordered top answers for Q9 over
the original and corrupted versions of IMDB, respectively.
The two results are originally ranked as 4th and 10th. The

attribute values of these two entities contain many query
keywords in the original database. Hence, adding and/or re-
moving some query keyword instances in these results, does
not considerably change their relevance score and they pre-
serve their ordering after corruption.

Since keywords mulan and hua appear in a small number
of attribute values and attributes, the value of λ for these
terms in the second and the third level of corruption is very
small. Similarly, since keyword animation only appears in
the genre attribute, the value of λ for all other attributes
(second level corruption) is zero. The value of λ for an-
imation in the third level is reasonable, 0.0007 for movie
entity set, but the noise generated in this level alone is not
considerable.
<movie id=“1492260”>
<title>The Legend of Mulan (1998)
(V)</title>
<genre>Animation</genre >
<link>Hua Mu Lan (1964)</link>
<link>Hua Mulan cong jun</link>
<link>Mulan (1998)</link>
<link>Mulan (1999)</link>
<link>The Secret of Mulan
(1998)</link>
</movie>

<movie id=“1180849”>
<title>Hua Mulan (2009)</title>
<character>Hua Hu (Mulan’s fa-
ther)</character>
<character>Young Hua Mu-
lan</character>
<character>Hua Mulan</character>
</movie>

(a) Original ranking

<movie id=“1492260”>
<title>The Legend of Mulan (1998)
(V) mulan mulan</title>
<genre></genre >
<link>Hua Mu Lan (1964)</link>
<link>Hua Mulan cong jun</link>
<link>Mulan (1998) mulan</link>
<link> (1999)</link>
<link>The Secret of Mulan (1998)
mulan </link>
<movie>

<movie id=“1180849”>
<title>Hua (2009) hua</title>
<character>Hua Hu (Mulan’s fa-
ther)</character>
<character>Young Hua Mulan mulan
mulan hua</character>
<character>Mulan</character>
</movie>

(b) Corrupted ranking

Figure 4: Original and corrupted results of Q9

6. EFFICIENT COMPUTATION OF SR SCORE
A key requirement for this work to be useful in practice is

that the computation of the SR score incurs a minimal time
overhead compared to the query execution time. In this sec-
tion we present efficient SR score computation techniques.

6.1 Basic Estimation Techniques
Top-K results: Generally, the basic information units

in structured data sets, attribute values, are much shorter
than text documents. Thus, a structured data set contains
a larger number of information units than an unstructured
data set of the same size. For instance, each XML document
in the INEX data centric collection constitutes hundreds of
elements with textual contents. Hence, computing Equa-
tion 3 for a large DB is so inefficient as to be impractical.
Hence, similar to [24], we corrupt only the top-K entity re-
sults of the original data set. We re-rank these results and
shift them up to be the top-K answers for the corrupted
versions of DB. In addition to the time savings, our empir-
ical results in Section 7.2 show that relatively small values
for K predict the difficulty of queries better than large val-
ues. For instance, we found that K = 20 delivers the best
performance prediction quality in our datasets. We discuss
the impact of different values of K in the query difficulty
prediction quality more in Section 7.2.

Number of corruption iterations (N): Computing
the expectation in Equation 3 for all possible values of x⃗ is
very inefficient. Hence, we estimate the expectation using
N > 0 samples over M(|A|× V). That is, we use N cor-
rupted copies of the data. Obviously, smaller N is preferred
for the sake of efficiency. However, if we choose very small
values for N the corruption model becomes unstable. We
further analyze how to choose the value of N in Section 7.2.

Limiting the values of K or N are simple ways to decrease
the execution time, without much accuracy degradation, as
we show in Section 7.

6.2 Structured Robustness Algorithm
Algorithm 1 shows the Structured Robustness Algorithm

(SR Algorithm), which computes the exact SR score based
on the top K result entities. Each ranking algorithm uses
some statistics about query terms or attributes values over
the whole content of DB. Some examples of such statistics
are the number of occurrences of a query term in all at-
tributes values of the DB or total number of attribute values
in each attribute and entity set. These global statistics are
stored in M (metadata) and I (inverted indexes) in the SR
Algorithm pseudocode.

Algorithm 1 CorruptTopResults(Q,L,M, I,N)

Input: Query Q, Top-K list L of Q by ranking function g, Metadata
M , Inverted indexes I, corruption iterations N .
Output: SR score for Q.

1: SR← 0; C ← {}; //C caches λT , λS for keywords in Q
2: FOR i = 1→ N DO
3: I′ ← I; M ′ ←M ; L′ ← L; //Corrupted copy of I, M and L
4: FOR each result R in L DO
5: FOR each attribute value A in R DO
6: A′ ← A; //Corrupted versions of A
7: FOR each keywords w in Q DO
8: Compute # of w in A′ by Equation 10; //If λT,w, λS,w

needed but not in C, calculate and cache them
9: IF # of w varies in A′ and A THEN
10: Update A′, M ′ and entry of w in I′;
11: Add A′ to R′;
12: Add R′ to L′;
13: Rank L′ using g, which returns L, based on I′, M ′;
14: SR += Sim(L,L′); //Sim computes Spearman correlation
15: RETURN SR← SR/N ; //AVG score over N rounds

The SR Algorithm generates the noise in the DB on-the-
fly during query processing. Since it corrupts only the top K
entities, which are anyways returned by the ranking module,
it does not perform any extra I/O access to the DB, except
to lookup some statistics. Moreover, it uses the information
which is already computed and stored in inverted indexes
and does not require any extra index.
In order to improve the efficiency of our method, we cor-

rupt only the attribute values that contain at least query
keywords. We also use the statistics of original database to
re-rank the corrupted results. Moreover, we further limit
the value of N . Our empirical results in Section 7 show that
these will largely improve the efficiency of our model without
much degradation of the prediction quality.

7. EXPERIMENTS

7.1 Experiments Setting
Data sets: Table 2 shows the characteristics of two data

sets used in our experiments. The INEX data set is from
the INEX 2010 Data Centric Track [22] discussed in Sec-
tion 1.The SemSearch data set is a subset of the data set
used in Semantic Search 2010 challenge [21]. The origi-
nal data set contains 116 files with about one billion RDF
triplets. Since the size of this data set is extremely large, it
takes a very long time to index and run queries over this data
set. Hence, we have used a subset of the original data set in
our experiments. We first removed duplicate RDF triplets.
Then, for each file in SemSearch data set, we calculated the

total number of distinct query terms in SemSearch query
workload in the file. We selected the 20, out of the 116,
files that contain the largest number of query keywords for
our experiments. We converted each distinct RDF subject
in this data set to an entity whose identifier is the subject
identifier. The RDF properties are mapped to attributes
in our model. The values of RDF properties that end with
substring “#type” indicates the type of a subject. Hence,
we set the entity set of each entity to the concatenation of
the values of RDF properties of its RDF subject that end
with substring “#type”. We have removed the relevance
judgment information for the subjects that do not reside in
these 20 files.

Table 2: INEX and SemSearch datasets characteristics

INEX SemSearch
Size 9.85 GB 9.64 GB

Number of Entities 4,418,081 7,170,445
Number of Entity Sets 2 419,610
Number of Attributes 77 7,869,986

Number of Attribute values 113,603,013 114,056,158

Query Workloads: Since we use a subset of the dataset
from SemSearch, some queries in its query workload may
not contain enough candidate answers. We picked the 55
queries from the 92 in the query workload that have at least
50 candidate answers in our dataset. Because the number of
entries for each query in the relevance judgment file has also
been reduced, we discarded another two queries (Q6 and
Q92) without any relevant answers in our dataset. Hence,
our experiments is done using 53 queries (2, 4, 5, 11-12, 14-
17, 19-29, 31, 33-34, 37-39, 41-42, 45, 47, 49, 52-54, 56-58,
60, 65, 68, 71, 73-74, 76, 78, 80-83, 88-91) from the Sem-
Search query workload. Some INEX queries contain char-
acters “+” and “-” to indicate the conjunctive and exclusive
conditions. In our experiments, we do not use these con-
ditions and remove the keywords after character “-”. Gen-
erally, KQIs over databases return candidate answers that
contain all terms in the query [2, 10, 18]. However, queries
in the INEX query workload are relatively long (normally
over four distinct keywords). If we retrieve only the enti-
ties that contain all query terms, there will not be sufficient
number of (in some cases none) candidate answers for many
queries in the data. Hence, for every query Q, we use the fol-
lowing procedure to get at least 1,000 candidate answers for
each query. First, we retrieve the entities that contain |Q|
distinct terms in query Q. If they are not sufficient, we re-
trieve the entities that contain at least |Q|−1 distinct query
keywords, and so on until we get 1000 candidate answers for
each query.

Ranking Algorithm: We have evaluated our query per-
formance prediction model using a representative ranking
algorithm called PRMS [12]. Many ranking methods for key-
word queries over structured data follow a similar heuristic
as this algorithm (e.g., [1, 4]). PRMS employs a language
model approach to search over structured data. It computes
the language model of each attribute value smoothed by the
language model of its attribute. It assigns each attribute a
query keyword-specific weight, which specifies its contribu-
tion in the ranking score. It computes the keyword-specific
weight µj(q) for attribute values whose attributes are Tj

and query keyword q as µj(q) =
P (q|Tj)∑

T∈DB P (q|T)
. The rank-

ing score of entity E for query Q, P (Q|E) is:

P (Q|E) =
∏
q∈Q

P (q|E) =
∏
q∈Q

n∑
j=1

[µj(q)((1− λ)P (q|Aj) + λP (q|Tj))]

(11)

where Aj is an attribute value of E, Tj is the attribute of
Aj , 0 ≤ λ ≤ 1 is the smoothing parameter for the language
model of Aj , and n is the number of attribute values in
E. We adjust parameter λ in PRMS in our experiments to
get the best MAP and then use this value of λ for query
performance prediction evaluations.
Configuration: We have performed our experiments on

an AMD Phenom II X6 2.8 GHz machine with 8 GB of main
memory that runs on 64-bit Windows 7. We use Berkeley
DB 5.1.25 to index the XML files and implement all algo-
rithms in Java.

7.2 Prediction Quality
In this section, we evaluate the effectiveness of the query

quality prediction model computed using SR Algorithm. We
use Pearson’s correlation between the SR score and the av-
erage precision of a query to evaluate the prediction quality
of SR score.
Setting the value of N : Let L and L′ be the original

and corrupted top-K entities for query Q, respectively. The
SR score of Q in each corruption iteration is the Spearman’s
correlation between L and L′. We corrupt the results N
times to get the average SR score for Q. In order to get a
stable SR score, the value of N should be sufficiently large,
but this increases the computation time of the SR score. We
chose the following strategy to find the appropriate value
of N : We progressively corrupt L 50 iterations at a time
and calculate the average SR score over all iterations. If
the last 50 iterations do not change the average SR score
over 1%, we terminate. N may vary for different queries in
query workloads. Thus, we set it to the maximum number
of iterations over all queries. According to our experiments,
the value of N varies very slightly for different value of K.
Therefore, we set the value of N to 300 on INEX and 250
on SemSearch for all values of K.
Different Values for K: The number of interesting re-

sults for a keyword query is normally small [13]. Hence, it
is reasonable to focus on small values of K for query perfor-
mance prediction. We conduct our experiments on K=10,
20. Both values deliver reasonable prediction quality (i.e.
the robustness of a query is strongly correlated with its ef-
fectiveness). We have achieved the best prediction quality
using K=20 for both datasets with different combination of
γA, γT , and γS which we will introduce later.
Training of γA, γT , and γS: We denote the coefficients

combination in Equation 10 as (γA, γT , γS) for brevity. We
train (γA, γT , γS) by 5-fold cross validation. After some
preliminary experiments, we found that large γA is effective.
Hence, to reduce the number of possible combinations, we fix
γA as 1, and vary the other two during the training process
to find the highest correlation between average precision and
SR score. We computed the SR score for γT and γS from 0
to 3 with step 0.1 for different values ofK. Table 3 shows the
training of γT and γS , and the correlation between average
precision and SR score on testing sets. It shows that for
different training sets, the values of (γA, γT , γS) for the best
correlation score are quite stable. In the following results,

Table 3: Training and testing of (γA, γT , γS) under K=20.

INEX SemSearch
training set (γA, γT , γS) correlation (γA, γT , γS) correlation

1 (1, 0.9, 0.8) 0.689 (1, 0.1, 0.6) 0.744
2 (1, 0.9, 0.8) 0.777 (1, 0.1, 0.6) 0.659
3 (1, 0.9, 0.8) 0.695 (1, 0.1, 0.8) 0.596
4 (1, 0.9, 0.8) 0.799 (1, 0.1, 0.6) 0.702
5 (1, 0.8, 0.3) 0.540 (1, 0.1, 0.6) 0.597

we set (γA, γT , γS) to (1, 0.9, 0.8) on INEX and (1, 0.1, 0.6)
on SemSearch.

Figures 5 and 6 depict the plot of average precision and
SR score for all queries in our query workload on INEX and
SemSearch, respectively. In Figure 5, we see that Q9 is easy
(has high average precision) and Q11 is relatively hard, as
discussed in Section 5.4. As shown in Figure 6, query Q78:
sharp-pc is easy (has high average precision), because its
keywords appear together in few results, which explains its
high SR score. On the other hand, Q19: carl lewis and Q90:
university of phoenix have a very low average precision as
their keywords appear in many attributes and entity sets.
Figure 6 shows that the SR scores of these queries are very
small, which confirms our model.

Figure 5: Average precision versus SR score for queries on
INEX using PRMS, K=20.

Figure 6: Average precision versus SR score for queries on
SemSearch using PRMS, K=20.

Table 4: Correlation of average precision and difficulty mea-
surements for different methods for K=10.

Method SR URM CR iAA iAES iAE iAS
INEX 0.471 0.247 0.379 0.299 n/a 0.111 0.143

SemSearch 0.486 0.093 0.091 0.066 0.052 0.040 -0.043

Table 5: Correlation of average precision and difficulty mea-
surements for different methods for K=20.

Method SR URM CR iAA iAES iAE iAS
INEX 0.556 0.311 0.391 0.370 n/a 0.255 0.292

SemSearch 0.564 0.177 0.09 0.082 0.068 0.056 -0.046

Baseline Prediction Methods
Clarity score (CR) [20] and Unstructured Robustness Method

(URM) [24] are two popular query difficulty prediction tech-
niques over text documents. The prediction quality (i.e. the
correlation between average precisions of queries and the
measurement) of clarity score and URM are 0.21 - 0.51 and
0.30 - 0.61, respectively [24]. We use these methods as well
as prevalence of query keywords as baseline query difficulty
prediction algorithms in databases.
URM and CR: Our goal in this experiment is to find how

accurately URM can predict the effectiveness of queries over
a database. We concatenate the XML elements and tags
of each entity into a text document and assume all enti-
ties (now text documents) belong to one entity set. The
values of all µj in PRMS ranking formula are set to 1 for
every query term.Hence, PRMS becomes a language model
retrieval method for text documents [13]. Similar to URM,
we implement CR by treating each entity in database as a
text document. We have used similar parameters as [20, 24]
to compute the CR for queries over our data sets.
Prevalence of Query Keywords: As we argued in Sec-

tion 4.2, if the query keywords appear in many entities, at-
tributes, or entity sets, it is harder for a ranking algorithm
to locate the desired entities. Given query Q, we compute
the average number of attributes (AA(Q)), average number
of entity sets (AES(Q)), and the average number of enti-
ties (AE(Q)) where each keyword in Q occurs. We consider
each of these three values as an individual baseline diffi-
culty prediction measurements. We also multiply these three
measurements (to avoid normalization issues that summa-
tion would have) and create another baseline measurement,
denoted as AS(Q). Intuitively, if these measurements for
query Q have higher values, Q must be harder and have
lower average precision. Thus, we use the inverse of these
values, denoted as iAA(Q), iAES(Q), iAE(Q), and iAS(Q),
respectively.
Comparison to Baseline Methods: Table 4 and 5 shows

the prediction accuracy (correlation between average pre-
cision and each measurement) for SR, URM, CR, iAA(Q),
iAES(Q), iAE(Q), and iAS(Q) methods over both datasets
for K=10 and 20, respectively. These results are based on
all queries in the query workloads without distinguishing be-
tween training and testing sets as in Table 3. The n/a value
appears in the table because all query keywords in our query
workloads occur in both entity sets in the INEX dataset.
The correlation values for SR Algorithm are significantly
higher than the correlation values of URM and CR on both
datasets. This shows that our prediction model is more effec-
tive than URM and CR over databases. Measurement iAA
provides a more accurate prediction than all other methods
over INEX. This indicates that one of the main causes of the
difficulties for the queries over the INEX dataset is to find
their desired attributes, which confirms our analysis in Sec-
tion 4.2. SR also delivers far better prediction qualities than
iAA(Q), iAES(Q), iAE(Q), and iAS(Q) measurements over
both data sets. Hence, SR effectively considers all causes of
the difficulties for queries over databases.

7.3 Efficiency
As mentioned in Section 6, we propose techniques to im-

prove the efficiency of our prediction model. Using these
techniques, the time spent on the calculation of SR score
is 1 and 1.1 second with correlation score of over 0.51 and
0.495 for INEX and SemSearch, respectively.

8. CONCLUSION
We introduced the novel problem of predicting the effec-

tiveness of keyword queries over DBs. We set forth a princi-
pled framework and proposed novel algorithms to measure
the degree of the difficulty of a query over a DB, using the
ranking robustness principle. Our extensive experiments
show that the algorithms predict the difficulty of a query
with relatively low errors and negligible time overhead.

9. ACKNOWLEDGMENTS
This work was supported in part by National Science

Foundation grants IIS-1216032 and IIS-1216007.

10. REFERENCES
[1] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective XML

Keyword Search with Relevance Oriented Ranking. In ICDE,
pages 517–528, 2009.

[2] G. Bhalotoa, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in databases
using BANKS. In ICDE, 2002.

[3] K. Collins-Thompson and P. N. Bennett. Predicting Query
Performance via Classification. In ECIR, 2010.

[4] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl. DivQ:
Diversification for Keyword Search over Structured Databases.
In SIGIR, 2010.

[5] R. Fagin, B. Kimelfeld, Y. Li, S. Raghavan, and
S. Vaithyanathan. Understanding Queries in a Search Database
System. In PODS, 2010.

[6] V. Ganti, Y. He, and D. Xin. Keyword++: A Framework to
Improve Keyword Search Over Entity Databases. PVLDB,
3:711–722, 2010.

[7] J. Gibbons and S.Chakraborty. Nonparametric Statistical
Inference. Marcel Dekker, New York, 1992.

[8] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2011.

[9] B. He and I. Ounis. Query performance prediction. Inf. Syst.,
31:585–594, November 2006.

[10] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
IR-Style Keyword Search over Relational Databases. In VLDB
2003.

[11] S. M. Katz. Estimation of Probabilistic from Sparse Data for
the Language Model Component of a Speech Recognizer. IEEE
Trans. Signal Process., 35(3):400–401, 1987.

[12] J. Kim, X. Xue, and B. Croft. A Probabilistic Retrieval Model
for Semistructured Data. In ECIR, 2009.

[13] C. Manning, P. Raghavan, and H. Schutze. An Introduction to
Information Retrieval. 2008.

[14] E. Mittendorf and P. Schauble. Measuring the Effects of Data
Corruption on Information Retrieval. In SDAIR, 1996.

[15] A. Nandi and H. V. Jagadish. Assisted Querying Using
Instant-Response Interfaces. In SIGMOD, 2007.

[16] L. Qin, J. X. Yu, and L. Chang. Keyword Search in Databases:
The Power of RDBMS. In SIGMOD, 2009.

[17] N. Sarkas, S. Paparizos, and P. Tsaparas. Structured
Annotations of Web Queries. In SIGMOD, 2010.

[18] A. Termehchy, M. Winslett, and Y. Chodpathumwan. How
Schema Independent Are Schema Free Query Interfaces? In
ICDE, 2011.

[19] M. Theobald, R. Schenkel, and G. Weikum. The TopX DB&IR
Engine. In SIGMOD, 2007.

[20] S. C. Townsend, Y. Zhou, and B. Croft. Predicting Query
Performance. In SIGIR, 2002.

[21] T. Tran, P. Mika, H. Wang, and M. Grobelnik. Semsearch’10:
the 3th semantic search workshop. In WWW, 2010.

[22] A. Trotman and Q. Wang. Overview of the INEX 2010 Data
Centric Track. In Comparative Evaluation of Focused
Retrieval, volume 6932 of Lecture Notes in Computer Science.
2011.

[23] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow. Learning to
Estimate Query Difficulty. In SIGIR, 2005.

[24] Y. Zhou and B. Croft. Ranking Robustness: A Novel
Framework to Predict Query Performance. In CIKM, 2006.

