
A Block DCT based

Printed Character Recognition System

Dissertation submitted in partial fulfillment for the award of the degree of

Master of Science (Mathematics)

with Specialization in Computer Science.

by

Sai Charan K.

(Regd.No.: 04006)

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

Sri Sathya Sai Institute of Higher Learning

(Deemed University)

Prashanthi Nilayam, March 2006

Dedicated to Mother Sai who chose to

spread Her message through Telugu natively...

Sri Sathya Sai Institute of Higher Learning

(Deemed University)

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

Certificate

This is to certify that this thesis entitled “A Block DCT based Printed Char-

acter Recognition System” being submitted by Sri. Koduru Sai Charan

in partial fulfillment of the requirements for the award of the degree Master of

Science (Mathematics) with Specialization in Computer Science to Sri

Sathya Sai Institute of Higher Learning, Prashanthi Nilayam (Deemed University),

is a record of bonafide research work carried out by him under my supervision and

guidance. It is a record of the work done by him in the four-month winter semester

of the academic year 2005-06 in the Department of Mathematics and Com-

puter Science of the Institute. The results embodied in this dissertation have not

been submitted to any other University or Institute for the award of any Diploma

or Degree.

Prof. G. V. Prabhakar Rao

Department of Mathematics and Computer Science,

Sri Sathya Sai Institute of Higher Learning,

Place: Prashanthi Nilayam Prashanthi Nilayam.

Date: 19th March 2006

ACKNOWLEDGEMENTS

At the outset, I express my deepest gratitude to Beloved Bhagawan Baba for

His constant presence through this work. Also, I lovingly remember my parents

for their support, as always.

I am grateful to my supervisor Prof. G. V. Prabhakar Rao, Department

of Mathematics & Computer Science, Sri Sathya Sai Institute of Higher Learning,

for his constant guidance through this work and the direction that he has provided

me all through.

I would like to thank the university administration, in particular, the Vice

Chancellor Sri A.V.Gokak, the Registrar, Dr. Lakshmi Narasimham, the Con-

troller of Examinations, Prof. M. Nanjundaiah & the Pricipal of the campus,

Prof. U.S. Rao, for kindly permitting me to pursue this work.

I would like to thank Prof. V.Chandrasekaran and Prof. C.J.M. Rao, De-

partment of Mathematics & Computer Science, Sri Sathya Sai Institute of Higher

Learning, for the excellent introductory course on Pattern Recognition Systems

and the brief discussions through the work; they were of great help in making this

project a success.

I express my thankfulness to the course coordinator, Dr. Pallav Baruah, for his

timely reviews and guidelines which have gone a long way in completing the work

in time, to Sri. Raghunath Sarma, coordinator, AI Center, SSSIHL to Sri. Ravi

Iyer, who has been an inspiration in perfection and also to Prof. Panchanathan,

Arizona State University, for his enlightening Power Points.

I am extremely grateful to all my classmates, seniors and juniors for all the

help they have rendered during the course of this work. However, the acknowledge-

ment would be incomplete without mentioning some people who have rendered the

greatest help I could hope for; that of lending their precious time to hear and ad-

vise me on many aspects of this work. They are Sri. Sai Suhas, Sri. Hanumanth

Rao Naidu, Sri. Srikanth Khanna, Sri. Shiva Kumar K., Sri. Prashanth Sai G. &

Sri. Ramprasad G..

Contents

1 Introduction 1

1.1 The Context of this work . 1

1.2 Brief History of OCR . 3

1.3 Design of the Pattern Recognition System 3

1.3.1 Sensing . 4

1.3.2 Segmentation & Grouping 4

1.3.3 Feature Extraction . 4

1.3.4 Classification . 5

1.3.5 Post-Processing . 5

1.4 OCR: The Problem, Methods, & Techniques 6

1.4.1 Scanning & Digitization . 6

1.4.2 Preprocessing . 6

1.4.3 Segmentation . 7

1.4.4 Feature Extraction . 7

1.4.5 Classification . 8

1.4.6 Post-processing . 8

1.5 The present work . 8

1.6 Applications . 9

1.7 Chapterization . 9

2 Previous Work on OCR for Indian Languages 11

2.1 Introduction . 11

2.2 Preprocessing − A Brief survey . 12

2.2.1 Noise Filtering . 12

2.2.2 Deskewing . 13

2.2.3 Page Segmentation . 14

2.2.4 Font Recognition . 14

2.3 Feature Extraction & Classification methods 15

2.3.1 Template Matching . 16

2.3.2 Deformable Templates . 16

2.3.3 Unitary Transforms . 17

2.3.4 Zoning . 17

2.3.5 Geometric Moments . 17

2.3.6 Zernike Moments . 17

2.3.7 Projection Histograms . 18

2.4 Existing OCRs for Indian Languages 19

2.4.1 The DMACS OCR . 19

3 The DCT Based Feature Extractor 22

3.1 Introduction . 22

3.1.1 Motivation . 22

3.1.2 The Discrete Cosine Transform:

The Mathematics . 24

3.1.3 The Discrete Cosine Transform:

The Pictorial Description 25

3.2 The Feature Extractor(s) . 28

3.2.1 The Design Cycle . 28

4 Results, Implementation & Discussion 39

4.1 The Tests and Results . 39

4.2 Discussion . 41

4.2.1 Implementation . 41

4.2.2 Other Considerations . 43

4.3 Future Developments . 43

4.4 An analysis of the Dictionary . 45

4.5 Conclusions . 47

A Sample Code 48

A.1 Binarization . 48

A.2 Zig-Zag Feature Vector . 48

A.3 Feature Extraction for Blockwise DC coefficients 51

A.4 Metrics . 52

A.5 Run the Tests . 52

A.6 Append the dictionary . 57

ABSTRACT

Optical Character Recognition of Indian languages is a a research field that

is socially very relevant and challenging. The social relevance lies in fact that

the OCR can help preserve documents of the past for posterity. Many ancient

manuscripts can be digitized and stored away for future editing and utilization

using OCR.

One important motivation for this work has been the digitization of the Tel-

ugu spiritual monthly magazine, “Sanaathana Sarathi”, published from Prashanthi

Nilayam.

The objective of the present work is to propose a prototype for an efficient

feature extractor for recognizing printed Telugu characters using the Blocked

Discrete Cosine Transform. The motivation to use this comes from the fact

that the Blocked Discrete Cosine Transform efficiently encodes the energy /

the significant details of the image in a few coefficients. This has also been one

of the main reasons for its use in the JPEG compression algorithms. A further

motivation for using the DCT is that it is a faster algorithm. Its computational

complexity is of O(Nlog2N).

In this work we propose a prototype feature extractor for Printed Telugu Char-

acters using the DC and the first AC coefficients of the Block Discrete Cosine

Transform applied on the micro-blocks of the character image. The prototype is

coded and tested on some sample text using Matlab and the classification was accu-

rate upto 95.6%. It was observed that for fixed font printed character recognition,

the DC coefficients of the micro-blocks were reasonbly adequate. An interesting

feature of the model developed is that it can be easily extended to any other script

in a very short time.

Chapter 1

Introduction

What is it?

-Bodhidharma

1.1 The Context of this work

Optical Character Recognition, popularly referred to as the OCR, is an active

area of research in this information age. It is a special case of the Pattern Recogni-

tion Systems and is one of the key issues regarding the use of information systems

in the acquisition of new information, which often resides in paper documents.

In order to provide a suitable solution to this problem, information systems will

have to be integrated with paper document processing systems, which are devised

to transform printed or handwritten documents into a computer-revisable form

[MAC].

Optical Character Recognition (OCR) is perhaps the most successful applica-

tion of Pattern Recognition, an allied problem of information systems. It is one

of the oldest tasks that has engaged computer scientists. Initially the goal was to

recognize machine printed text formed from characters drawn from a single font

A Feature Extractor using Blocked DCT

1.2 The Context of this work 2

and of a single size. With success in recognizing single-font, single-size text, the

goal was expanded to reading multi-font text in which a range of character sizes

may be present. Success bred more challenging problems such as hand-printed

character recognition, and, of late, the recognition of cursive scripts both printed

and handwritten [CSR].

Optical Character Recognition is regarded as one of the most challenging steps

in the process of digitization of literature. It deals with machine recognition of

characters present in an input image obtained using scanning operation. It refers

to the process by which scanned images are electronically processed and converted

to an editable text. The need for OCR arises in the context of digitizing docu-

ments from the ancient and old era to the latest, which helps in sharing the data

through the Internet. OCRs are now used to generate machine-readable text from

printed documents. These are generally legacy documents from the pre-electronic

publishing era, but may also be printed documents for which the original machine-

readable text was discarded or lost.

One of the aims of the Universal Digital Library project is to digitize the vast

corpus of Indian literature available in the regional scripts. Due to climatic ef-

fects and poor storage conditions, even the which are books barely 50 to 100 years

old are significantly damaged to the extent that conventional OCRs are not very

successful [IYER]. According to Wikipedia [WIK], Optical Character Recogni-

tion, “involves computer software designed to translate images of typewritten text

(usually captured by a scanner) into machine-editable text, or to translate pic-

tures of characters into a standard encoding scheme representing them in ASCII

or Unicode.”

According to Sachwani [SAC] and Raghavan [RAG], “OCR is the process of

converting scanned images of machine printed or handwritten text into a computer

processable format.”

A Feature Extractor using Blocked DCT

1.3 Brief History of OCR 3

1.2 Brief History of OCR

Optical Character Recognition is a problem recognized as being as old as the

computer itself. There have been many papers and technical reports published

reviewing the history of OCR technologies [TRI]. Modern OCR was said to have

begun in 1951 due to an invention by M. Sheppard called GISMO, a robot reader-

writer. In 1954, a prototype machine developed by J. Rainbow was used to read

uppercase typewritten letters at very slow speeds. By 1967, companies such as

IBM finally marketed OCR systems [VER].

1.3 Design of the Pattern Recognition Sys-

tem

According to Duda, Hart and Stork [DUD], Pattern Recognition Systems

(PRS) can be thought of consisting of the following problems: Sensing, Segmen-

tation & Grouping, Feature Extraction, Classification & Post-Processing. The

diagrammatic representation is given below :

Figure 1.1: Conceptual view of the Pattern Recognition System

A Feature Extractor using Blocked DCT

1.3 Design of the Pattern Recognition System 4

1.3.1 Sensing

Sensing is the perceiving of the input by the PR system. It could be by way

of a camera or some transducer or some other signal sensing device. The design

of the Sensor is by itself a field of study. There are many factors about the Sensor

that can influence the efficiency of the PRS. For eg., the resolution of the camera

plays an important role in the quality of the image that may be given as input to

the PRS.

1.3.2 Segmentation & Grouping

Consider a PRS for the automated segregation of bottles. The input may be

through a video camera that is focused on a conveyor belt that is carrying the bot-

tles. The bottles may have different colors, shapes, sizes, texture etc. The bottles

may also be overlapping as they come across the conveyor belt. The first task in

recognition is to identify the bottle, the ‘boundary’ that defines the bottle. This

task is called segmentation. According to Duda & Hart [DUD], “Segmentation is

one of the deepest problems of pattern recognition.” The problems of segmenta-

tion in the field of Optical Character Recognition systems will be very different

from those of the Text-to-Speech PR systems. Lot of literature is available on this

subject for specialized domain, and no single technique can be guaranteed to work

on all domains.

1.3.3 Feature Extraction

For reasons more practical than theoretical, we distinguish between Feature

Extraction and Feature Classification. An “omnipotent classifier”1 should not

need the help of a sophisticated feature extractor and conversely, an ideal feature

extractor would should make the job of a classifier trivial. The choice of the feature

will very much affect the time and space complexity of the PR System. But, the

1see [DUD], p.11

A Feature Extractor using Blocked DCT

1.3 Design of the Pattern Recognition System 5

quality of the PR System should not be compromised, and hence, there has to

be a trade off between the two. Coming to our example of the PR system for

segregation of bottles, an intuitive feature, as was mentioned earlier, could be the

color or size or shape or texture of the bottle. A study has to be made as to which

of these features are “distinguishing”, ie., which feature(s) differentiate one type

of bottle from the other types. For example, if the blue and green bottles have

the same size, the size cannot be a reliable feature! One another aspect remains

to mentioned here: that of invariance or tolerance. The feature should be

tolerant to some distortions in the input. For example, the distance of the camera

from the bottle (which could lead to projective distortion) should not affect the

classification process.

1.3.4 Classification

The classification uses the features extracted in the previous step to decide the

group to which the feature belongs to. This is usually in the form of some function

of the feature(s). For example, some kind of metric can be used to measure the

distance between various features. The distance (or a function of it), can be treated

as the classifier code. This code is the output of the classification phase. Some

times, many classifiers could be used and the democratic policy can be used to

make the final decision. Some popular classifiers are the 1-Nearest Neighbour (or

the 1-NN) classifier, the n-Nearest Neighbour (or the n-NN) classifier, the Neural

Net Classifier. This phase also may use the Artificial Intelligence methods of

learning. More on this in later chapters. Note: The neural net classifier has

“learning” incorporated into itself!

1.3.5 Post-Processing

The input to this phase is the classifier code that was introduced in the previous

section. The role of this phase is to make decisions. And, once there is decision

A Feature Extractor using Blocked DCT

1.4 OCR: The Problem, Methods, & Techniques 6

making, there is bound to be error. So, the aim of this phase can now be defined

to be the process of making decisions with minimum average error.

1.4 OCR: The Problem, Methods, & Tech-

niques

As a special case of the PR systems, we will take a look at the OCR, which is one

of the many sub problems of PRS, and is of special interest in this work. The OCR

problem, consists of: Image Measurement, Feature Extraction & Classification

[TOU, PAT]. This scheme is much the same as the one proposed by [DUD] with

the Image Measurement referring to Sensing, Segmentation & Grouping and the

others being the same.

1.4.1 Scanning & Digitization

The Document should first be scanned & saved in a standard format so as to

be processable by any standard image processing tool.

1.4.2 Preprocessing

The scanned image is subjected to certain image processing algorithms such

as cropping and alignment. The inherent imperfections of the image are to be

removed before the next phase so that the processing is simple later. The various

processes involved here are : noise filtering, deskewing, page segmentation & font

recognition [RAG]. In OCR parlance, these steps form the Pre-Processing section.

For example, if the font is recognized, we can map from the document font to some

standard font for post processing purposes.

A Feature Extractor using Blocked DCT

1.4 OCR: The Problem, Methods, & Techniques 7

Figure 1.2: The OCR System Design

1.4.3 Segmentation

Segmentation in the context of character recognition can be defined as the

process of extracting from the preprocessed image the smallest possible charac-

ter units suitable for recognition; i.e. to segment the fundamental units of the

document.

1.4.4 Feature Extraction

Feature extraction refers to the process of characterizing the sub images gen-

erated as the output of the segmentation procedure based on certain specific pa-

rameters. There are many previous approaches like: template matching, zoning

A Feature Extractor using Blocked DCT

1.5 The present work 8

etc. For more information, please refer to [TRI].

1.4.5 Classification

Classification refers to placing each of the recognition units into one of a pre-

determined set of classes, based on the characteristics of that unit as evaluated

by the feature extraction procedure. Thus, each character image is mapped to a

textual representation.

1.4.6 Post-processing

Here, the output of the classification stage is converted into ASCII or ISCII or

other standard coding schemes so that words, sentences and paragraphs are recon-

structed from the outputs of the classification stage. A well-structured dictionary

may also be used to resolve ambiguities in recognition.

1.5 The present work

This project seeks to propose an OCR feature extraction system using Fourier

methods, the DCT in particular.

As in the OCR implemented by Sachwani[SAC] and Raghavan[RAG], in this

work also, the scanned image is saved as a 256-color bitmap image. This image

is then segmented into characters. These segments are then resized to a 32-by-32

matrix. This matrix is to be further divided into 16, 8-by-8 matrices. The DCT is

applied to these 16 matrices to get the DCT coefficients. Of these coefficients, the

first coefficient, being the DC component, and the next two to three AC coefficients

are considered as the significant features for each of the 16 sub matrices. The

feature vector for the entire image is then to be constructed from these chosen

coefficients. The problem now is to construct a feature vector and check the

‘discriminating’ power of this feature vector for character recognition. This gives

A Feature Extractor using Blocked DCT

1.7 Applications 9

the ‘Average Pixel Intensity’ feature vector.

An enhancement of the above procedure was also tested. The above procedure

was carried out on a block size of 4-by-4. This was with the hope that it would

yield a more localized and discriminating feature vector, as we are concentrating

at a smaller area. This would definitely increase the feature vector size and hence

the time and space complexity of the recognition process, but it may be worth the

effort.

1.6 Applications

1. Automated fax reader for the blind [ALN].

2. Text to speech recognition.

3. Document reader for offline scanned text images or Document Image De-

coding (DID) [BRU].

4. Assigning zip codes to letter mail.

5. Reading data entered in forms (tax applications etc).

6. Account number verification on bank drafts & checks.

7. Automatic validation of passports.

8. Valuation of exams [SAC, RAG].

9. Digitization of Spiritual literature for ease of access over the internet or other

media.

1.7 Chapterization

The report is organized as follows:

A Feature Extractor using Blocked DCT

1.7 Chapterization 10

The first chapter introduces Pattern Recognition Systems and their special

case, the Optical Character Recognition Systems from a utilitarian and historical

perspectives. It also provides some applications.

The second chapter is a survey of the existing methods and techniques in use.

It then mentions some of the existing OCRs for the Indian languages and gives

some implementation details of the OCR developed at DMACS, SSSIHL.

The third chapter presents the details of the methodology adopted in this work,

the mathematics and the implementation of the algorithms used.

The last chapter presents the results and analyses the results obtained. It also

discusses the results and proposes some future enhancements.

A Feature Extractor using Blocked DCT

Chapter 2

Previous Work on OCR for

Indian Languages

...echoes from eons...

This chapter presents an overview of the existing important feature extraction

techniques and classification methods. Along with a summary of the existing

OCRs for the Indian Languages (in particular the Telugu and the Tamil scripts),

it also discusses in some detail, the techniques used by the OCR implemented at

the Department of Mathematics & Computer Science, DMACS, SSSIHL.

2.1 Introduction

In the following sections, we will describe some of the existing preprocessing,

feature extraction and classification techniques. But, considerable attention is

given to the techniques used by the OCR developed at the Department of Mathe-

matics & Computer Science, SSSIHL, by Sachwani [SAC], Easwar [EAS], Raghavan

[RAG] & Sudheer. The present is an attempt to improve the performance of the

A Feature Extractor using Blocked DCT

2.2 Preprocessing − A Brief survey 12

feature extraction component of the above OCR by adding a new prototype based

on an approach using the Block DCT, implemented in Matlab.

2.2 Preprocessing − A Brief survey

The following methods pertaining to the preprocessing techniques were imple-

mented by Raghavan & Sudheer [RAG]. The following subtasks form the core

gamut of the preprocessing phase:

1. Noise Filtering

2. Deskewing

3. Page Segmentation

4. Font Recognition

2.2.1 Noise Filtering

Noise is the unnecessary ‘information’ that is present in the image, which may

have been inadvertently introduced. This may be because of inefficient input

devices used etc. For example, when an image is scanned, a black color border

may be introduced. For removing the noise, which may interfere with the working

of the PR system, filters are used. Filters are essentially mathematical functions

which help to ‘differentiate’ the image from the noise. There are two types of filter

widely used:

1. Spatial filters, which work in the spatial domain. Examples are the Order,

Mean & Median filters.

2. Frequency filters which work in the frequency domain. Examples include

Inverse, Weiner, Constrained, Geometric filters among the others.

Further, this step also includes:

A Feature Extractor using Blocked DCT

2.2 Preprocessing − A Brief survey 13

1. Thresholding and Binarization.

2. Black border removal.

Thresholding and Binarization

In this step, the gray image is converted to a ‘binary’ image. By binary, we

mean that only black or white pixels are present in the image. This helps us to work

more efficiently with the image than with the gray or color image. Binarization is

achieved through the process of thresholding. In thresholding, a ‘threshold’ value

is chosen. Any pixel with a value greater (or less) than the threshold, is converted

to a text (or background) pixel. That is, its value is made either 0 or 255.

Black border removal

In this process, the black borders are identified and clipped. For the iden-

tification process, an adaptive threshold value is chosen and neighborhoods of

continuous black pixels are chosen and clipped. A ratio of black pixels to the num-

ber of pixels in each row is compared against an adaptively determined threshold

value. Those rows with the greater than the threshold are marked as black border

rows. This process is continued till a non-black border row is encountered. Then,

all that needs to be done is to remove those rows.

2.2.2 Deskewing

While scanning the image, if the paper/source document is not aligned prop-

erly, it may cause the components to be tilted. This could lead to erroneous

behaviour of the PR system. To prevent this, deskewing methods have been de-

vised, which detect & remove the skew from the image. As defined by Raghavan

[RAG]1, “Skew is the counter-clockwise orientation of the dominant text base-line

with respect to the x-axis”. Some methods for deskewing are:

1see page 31

A Feature Extractor using Blocked DCT

2.2 Preprocessing − A Brief survey 14

1. Based on Projection Profiles (both horizontal and vertical).

2. Based on Hough transforms.

3. Fourier based methods.

The DMACS OCR has two methods of skew detection. One is a variant of the

Hough transform and the other is based on the observation that the gradient of

the text base-line should be perpendicular to the text line. For details, please see

[RAG]2.

2.2.3 Page Segmentation

Most of the time, the documents scanned have multiple regions. A region is

an area of continuous homogeneity. By this we could refer to a section/block of

text or images or a paragraph, the start and end of the page etc. So essentially,

we are partitioning the document into its components.

2.2.4 Font Recognition

This is a very important phase of the OCR system. It affects the Automatic

Document Processing (ADP), which is what the OCR aims to attain, in two im-

portant ways [RAG]3:

1. It reduces the number of alternate shapes for each class, leading to single

font recognition.

2. The font information along with the OCR output can be used for typesetting

the document by the native text processor.

The DMACS OCR uses three methods of font detection. The first one is based

on the ‘most frequently occurring character’. This character in different fonts is

2see pages 45-54
3see page 7

A Feature Extractor using Blocked DCT

2.3 Feature Extraction & Classification methods 15

used as a feature and is compared against a dictionary which contains features for

the most common fonts. The second approach is based on‘typographical structure

of text lines’. In this method, the characters are divided into three zones: upper,

central and lower. This method takes into consideration the space between words,

the proportion of the text in the upper and lower zones. The third method is

based on ‘global texture features’.

2.3 Feature Extraction & Classification meth-

ods

Feature Extraction has been defined as, the process of extracting from the

raw data that information which is most useful for the purposes of classification.

That is to reduce the feature variation between members of the same class while

maximizing the feature variation between members of different classes.

Trier et.al.,[TRI] refer to the problem of dimensionality that must be considered

when we propose to use a statistical classifier. In essence, this principle warns us

that the number of features must be kept reasonably small when the training set

is small. As a rule of the thumb, they propose that we use the number of training

samples around 5-10 times the dimensionality of the feature vector for any given

class.

The following are some common techniques of feature extraction:

1. Template Matching

2. Deformable Templates

3. Unitary Transforms

4. Zoning

5. Geometric Moments

A Feature Extractor using Blocked DCT

2.3 Feature Extraction & Classification methods 16

6. Zernike Moments

A brief description of these methods is provided in the next few pages. Before

that, a word on invariance is in order. Invariant features are the features that

do not significantly change with variations in the characters. The variations in

characters could be translation, rotation, skew, scale, mirroring etc. The feature

should be more or less the same inspite of the above occurrences.

Also, sometimes, the characters can be reconstructed from the feature itself.

A good example is that of the DCT. If we choose the DCT of a character or of

some sub-image of it as the feature, we can recover the entire character by taking

the IDCT of the corresponding features! But, the sheer size of the feature in this

case can be prohibitive.

2.3.1 Template Matching

This is perhaps the most basic form of feature extraction [TOU, TRI]. Actually,

in this case, there is no extraction. Instead, template characters are stored in the

database and the entire input character is compared to every template in the

database. The closest one is chosen based on some similarity measure like the

mean squared distance:

D =
M∑
i=1

(Z(xi, yi)− Tj(xi, yi))
2 (2.1)

where, Z is the input character and Tj is the jth template in the database. The

limitations of this method are apparent.

2.3.2 Deformable Templates

Although this technique has been used in Object Recognition, it is not clear

how the templates are chosen for the characters4.

4please see page 5 of [TRI]

A Feature Extractor using Blocked DCT

2.3 Feature Extraction & Classification methods 17

2.3.3 Unitary Transforms

The transforms used in image compression are generally Unitary. By this we

mean that if A is the matrix form of the image transform, the A−1 = A∗T . Where

A∗ is the adjoint matrix to A and the superscripted T stands for the transpose. In

most cases, these transforms can be represented by a (finite or truncated) series of

orthogonal basis functions. The classic example is that of the Fourier Transform.

Other transforms include the KL and Hadamard transforms. It has been shown

that the KL transform is the statistically optimal (in the sense of minimum mean-

square error) transform [TOU], but it is computationally expensive.

2.3.4 Zoning

In this method, the image is divided into m × n blocks and the average gray

level is computed for each block. This is taken as the feature.

2.3.5 Geometric Moments

The word ‘moment’ here refers to the some of the characteristics that can be

calculated from the images. There are moments of different orders that are used in

pattern recognition as they are in statistics and elsewhere. The regular moments

of order (p + q) for a given image of M pixels Z are given by:

mpq =
∑
i=1

MZ(xi, yi) (xi)
p (yi)

q (2.2)

Similar definition are also provided for the central, relative moments.

2.3.6 Zernike Moments

The Zernike moments are projections of the input image on the space spanned

by the orthogonal V -functions defined by:

Vnm(x, y) = Rnm(x, y) exp
(

j m tan−1
(

y

x

))
(2.3)

A Feature Extractor using Blocked DCT

2.3 Feature Extraction & Classification methods 18

Figure 2.1: Example of a projection.

where j =
√
−1, n ≥ 0, |m| ≤ n, n− |m| even and

Rnm(x, y) =

n−|m|
2∑

s=0

(−1)s(x2 + y2)
n
2
−s(n− s)!

s!
(

n+|m|
2 − s

)
!
(

n−|m|
2 − s

)
!

(2.4)

2.3.7 Projection Histograms

For binary images, this is another technique used for feature extraction. For

a horizontal projection of the image, y(xi) is the number of pixels with x = xi.

This along with vertical projections can make useful feature vectors. But note

that the horizontal projection is not slant invariant, while the vertical projection

is. Recently, to compare histograms, [DHN] has successfully used the Battacharya

measure. It is defined as: ∑
i

√
Xi

√
Yi (2.5)

where,

Xi and Yi are the ith frequency values of the two histograms under consideration.

A Feature Extractor using Blocked DCT

2.4 Existing OCRs for Indian Languages 19

Some common classification techniques are Nearest Neighbour and its variants

[TOU, DUD]5, Neural Net Classifiers [DUD]6.

2.4 Existing OCRs for Indian Languages

Perhaps the most active agency in India for OCR development is the Ministry

of Information Technology’s Technology Development for Indian Languages or the

TDIL [TDL]. The Vishwabharathi team periodically announces the advances made

in this regard. The report says, “OCR with more than 97% accuracy has been

developed for seven Indian Languages viz Hindi, Marathi, Bangla, Tamil, Telugu,

Punjabi, Malayalam. The OCR technologies for Assamese, Oriya, Malayalam and

Gujarati scripts are in the advanced stages of development”. Examples of these

are DEVDRISHTI (for devanagari script), Gurmukhi OCR (for punjabi script).

2.4.1 The DMACS OCR

The DMACS OCR was developed in Visual C++ 6.0 for the Windows plat-

form. The preprocessing phase was developed chronologically after the main OCR

program was developed. The preprocessing techniques used in this OCR have

already been mentioned in section 2.2.

The next phase is that of segmentation. In this OCR system, a simple segmen-

tation technique has been implemented. The first task is that of line segmentation.

For this, The document is searched from top to down for presence of background

rows, i.e., for rows that contain only background rows. An appropriate threshold

number of rows would indicate the presence of the text-line separator. This may

lead to discrepancies in the segmentation of Telugu scripts because of the presence

of a mini line just below the main text. See figures 2.3. But, for segmenting the

connected components, a region-growing algorithm is used. It starts at the first

5see chapter: 4, section: 4.5 of [TRI]
6see page 376

A Feature Extractor using Blocked DCT

2.4 Existing OCRs for Indian Languages 20

encountered text pixel and grows the character by looking for the presence of back-

ground pixels until some threshold level is reached. The algorithm is presented in

[SAC].

Figure 2.2: How segmentation is done.

Figure 2.3: Sample Telugu scripts and the problem of segmentation.

Figure 2.4: No problems in segmenting in this case.

The next phase is that of Feature Extraction and Classification. The DMACS

OCR uses the Uniform sampling method and the Gradient Based Contour Encod-

ing techniques. The Uniform sampling method, which is a rather intuitive and

appealing method was proposed by Sachwani [SAC]. It consists of uniformly sam-

pling the character horizontally and vertically and using the number of times the

line crosses the character as the feature. The process is depicted in figure 2.5.

A Feature Extractor using Blocked DCT

2.4 Existing OCRs for Indian Languages 21

Figure 2.5: The Uniform Sampling technique.

The other method, the Gradient Based Contour Encoding is based on the

observation that the object contour and the structure are encoded in the gradient

direction and magnitude at each pixel of the image. The technique uses the Sobel

operator. The features used here are of two types:

1. Binary Directional Features

2. Real valued Directional Features

The classifier implemented is the 1-Nearest Neighbour classifier.

The last phase is that of the post-processing. In this phase, the DMACS OCR

conforms to the ISCII or the Indian Script Code for Information Interchange. The

out code of the classifier is used to convert the characters into ISCII codes which

are then added to a .aci file. The format of the aci file which are recognizable by

standard Telugu text processors like i-Leap is provided in the appendix of [SAC].

The performance results of these OCRs are around 96.60% on the average.

A Feature Extractor using Blocked DCT

Chapter 3

The DCT Based Feature

Extractor

Everything should be as simple as possible, but no simpler.

-Albert Einstein

This chapter describes the core part of the present project,a Block DCT based

feature extractor, that was developed as part of this work.

3.1 Introduction

3.1.1 Motivation

Consider the following images in figure 3.1. The idea for this feature extractor is

very intuitive. Observe that the average number of text-pixels in any of the 16 grids

varies for different characters. Consider now the following so called ‘confusion-

pairs’ − characters which are similar and many OCRs tend to classify one for the

other. The only way in which the two characters differ is the bottom-right curve in

the 13th block. That is, they are the same except for the small curve in the bottom

A Feature Extractor using Blocked DCT

3.1 Introduction 23

(a) ’MA’ (b) ’NU’

Figure 3.1: The characters ‘MA’ & ‘NU’. Note the circled portion.

block. One first observation is that there are text pixels at the bottom-right of the

13th block of the first image while there are no text pixels at the bottom-right of

the 13th block of the second image. Clearly, the DC & AC frequencies of the two

images definitely differ in the 13th block. This is the source of the idea. For a single

font, just the average pixel intensity may be adequate. But, for some fortuitous

cases the average number of the pixels may turn out to be the same. Hence, we

will have to use some of the AC frequencies of the image also. For this, we need

to find a mathematical tool that will give us the DC and the AC components of

the image.

According to P.Z. Myers, “the variations in intensity across a complex image

can be treated as a harmonic function, which can be decomposed into a series of

simpler waves − a set ranging from low frequency waves that change slowly across

the width of the image, to high frequency waves that oscillate many times across

it. We can think of an image as a set of spatial frequencies. If there is a slight

gradient of intensity, where the left edge is a little bit darker than the right edge,

that may be represented by a sine wave with a very long wavelength. If the image

contains very sharp edges, where we have rapid transitions from dark to light in

A Feature Extractor using Blocked DCT

3.1 Introduction 24

the space of a few pixels, that has to be represented by sine waves with a very short

wavelength, or we say that the image contains high spatial frequencies” [ANL].

Typically, to get the (spatial) frequency content of an image, the image trans-

form that is used is the 2-dimensional Discrete Cosine Transform [RIC] which was

proposed by Ahmed, Natarajan and Rao in 1974 [AHM].

In effect, the DCT expresses the image block as an array of weights for a set

of two-dimensional repeating patterns, called basis functions.

3.1.2 The Discrete Cosine Transform:

The Mathematics

Thus, the ideal mathematical tool for this is the Discrete Cosine Transform or

the so called DCT. The DCT is defined as follows:

D(i, j) = C(i)C(j)
N−1∑
x=0

N−1∑
y=0

p(x, y)cos
[
(2x + 1)

2N
iπ

]
cos

[
(2y + 1)

2N
jπ

]
(3.1)

where,

C(u) =


√

1
N if u = 0√
2
N if u > 0

(3.2)

The matrix form of equation 3.1 is described by:

D(i, j) =


1√
N

if i = 0√
2
N cos

(
(2j+1)

2N iπ
)

if i > 0
(3.3)

The following are some of the salient properties of the DCT [ANL]:

1. The DCT is real and orthogonal. ie, D = D∗ ⇒ D−1 = DT

2. The DCT is a fast transform. That is, the time complexity of the DCT is

comparable to that of the Fast Fourier Transform (FFT). The DCT of a

vector of N elements can be calculated in O(Nlog2N) operations1.

3. The DCT concentrates most of the image energy in very few coefficients, as

can be seen from figure 3.2.
1see p.152 [ANL]

A Feature Extractor using Blocked DCT

3.1 Introduction 25

(a) The Source (b) DFT (c) DCT

Figure 3.2: Energy Distributions

4. The N × N DCT is the next best choice to the KL transform, which is

statistically the the most efficient transform [TOU].

3.1.3 The Discrete Cosine Transform:

The Pictorial Description

In the case of 1-dimensional transform of a vector, the vector can be expressed

as a linear combination of the basis vectors. Similarly, in the case of 2-dimensional

transform of a matrix, the original matrix can be expressed as a combination of

the basis images. The basis functions for the 1-dim DCT are shown in figure 3.3(a)

and the basis functions for the 2-dim DCT are shown in the image 3.3(b).

Pictorially, the process of 1-dim DCT can be depicted as follows. The first or

the DC coefficient is the simple wighted sum (which turns out to be an average)

of all the elements of the vector, the weights being the discrete amplitude values

of the cosine functions of the frequency equal to the index of the coefficient being

calculated. The process is shown in figure 3.4 [FRD].

The 2-dimensional DCT uses the one-dimensional DCT as the basic operation.

It works on each of the rows of the matrix to get the 1-dimensional coefficients.

The coefficients so obtained are arranged in the same order, i.e., the first column

A Feature Extractor using Blocked DCT

3.1 Introduction 26

(a) One-dimensional DCT Basis Vectors (b) Two-dimensional DCT Basis

Vectors

Figure 3.3: Basis Images

Figure 3.4: The process of DCT

A Feature Extractor using Blocked DCT

3.1 Introduction 27

contains the DC coefficients, the second column contains the first AC coefficients

and so on. However, the spatial information is still retained because of the order

of the arrangement of the coefficients. Thus it makes sense to take the 1-DCT of

the columns now. This gives the 2-DCT of the original matrix, which, we conclude

by the above discussion, contains the (spatial) frequency information in both the

directions. The resulting frequency distribution is as in figure 3.5 [FRD].

Figure 3.5: The frequency distribution of 2-DCT

Definition:

Spatial Frequencies: If f(x,y) denotes the luminance (intensity) of the image and x,

y are the spatial coordinates, then, ξ1, ξ2 are the spatial frequencies that represent

luminance changes with respect to spatial changes. The units of ξ1 and ξ2 are the

reciprocals of the x and y respectively2 [ANL].

The ordering of the 2-DCT coefficients used is the zig-zag ordering as shown

in figure 3.6

Figure 3.6: Zig-Zag ordering of 2-DCT coefficients

2see page 16 of [ANL]

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 28

3.2 The Feature Extractor(s)

Consider the figure 3.7. It shows the image of a character embedded in a 4-by-4

block. Each of these blocks is actually composed of 8-by-8 micro-blocks. In the

following procedure, the image is first resized to a 32× 32 block. Next, the 2DCT

function is applied to the 16 micro-blocks of size 8× 8 or size 4× 4.

Figure 3.7: (a) A character framed in a 4-by-4 block and (b) a sample 8-by-8

sub block

3.2.1 The Design Cycle

The logical model that is used in designing the feature extractor3 is shown in

figure 3.8.

Data Collection

The first stage in PR system is that of data collection. The designer or devel-

oper must have enough data to study and come up with some conceptual model for

the PRS. In our case, the typical samples were the character samples. Also, some

sample passages and texts were obtained for the tests. Since the discrimination of

confusion-pairs is critical to the process, many such pairs were also collected.
3The model followed here is as described by Duda, Hart and Stork in [DUD]

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 29

Figure 3.8: The Feature Extractor Design Cycle

Feature Choice

To start with, about fifteen different choices of features were made. All these

were coded and tested on typical samples collected in the previous phase. The

current phase is the feasibility or preliminary testing phase. It helped us decide

if the feature(s) under consideration will make a reasonable candidate for deeper

study. The features initially selected are enumerated here:

1. The DCT of the entire image was concatenated row-wise to get a single

vector.

2. The DCT of the entire image was converted to a vector using the zig-zag

ordering shown in 3.6.

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 30

3. The 1-DCT of each row was concatenated to obtain another feature.

4. The 1-DCT of each column was concatenated to obtain another feature.

5. The above two features were concatenated to obtain another feature.

6. The DC components of each of the 16 micro-blocks of the Block 2-DCT

(blocksize being 8-by-8) were concatenated to get another feature.

7. The DC and the first AC component of the Blockwise 2-DCT (blocksize

being 8-by-8) were concatenated to get another feature.

8. The DC and the first two AC component of the Blockwise 2-DCT (blocksize

being 8-by-8) were concatenated to get another feature.

9. The DC components of the of the 1-DCT of each row were concatenated to

get another feature.

10. The DC and the first AC components of the of the 1-DCT of each row were

concatenated to get another feature.

11. The DC and the two first AC components of the of the 1-DCT of each row

were concatenated to get another feature.

12. The DC components of the of the 1-DCT of each column were concatenated

to get another feature.

13. The DC and the first AC components of the of the 1-DCT of each column

were concatenated to get another feature.

14. The DC and the two first AC components of the of the 1-DCT of each

column were concatenated to get another feature.

15. The concatenation of the above two in each case was also considered.

The features stated above implemented in Matlab. The in-built dct() &

dct2() functions were used for calculating the 1- & 2-DCTs. As a sample, the

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 31

main steps of the algorithm for the feature extraction using Block DCT is de-

scribed below:

Input: The input used was a 256 color bitmap image (in this case, the bitmap was

created in MS Paint).

1. The input image is first binarized. This was achieved through the thresh-

olding of the input (gray) image at the level of 128 intensity.

2. The binarized image is then clipped of all the margins. That is, the image is

clipped so that there are no background pixels surrounding the image. The

algorithm developed by Sachwani et.al., as part of [SAC] is used.

3. The binarized image is then segmented into its component characters.

4. The segmented image is then given as input to the 2DCT. To get the block-

wise DCT of the 16 8-by-8 sub-matrices are given as input to the 2DCT

function. The output DC coefficients of the 16 matrices are concatenated

to form a 1-by-16 feature vector. This vector is saved for each of the input

characters to build the dictionary.

5. The function was run on sample “confusion-pairs” or characters that are

much alike. Some typical confusion-pairs are shown in figure 3.9.

Figure 3.9: Some typical confusion pairs

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 32

Some sample code implementing this algorithm is listed here.

function c=c_blockwise_DC_8size(image)
bin_image = image;
clipped_bin_image = clipallmargins(bin_image);
resized_clipped_bin_image=imresize(clipped_bin_image,[32,32]);
i=1;j=1;k=8;l=8;
step=8;
plotnumber=0;
for countx=0:3,

for county=0:3,
a=c_getsubmat(resized_clipped_bin_image,
i+(countx*step),j+(county*step),
k+(countx*step),l+(county*step));
b=dct2(a);
plotnumber=plotnumber+1;
c(1,plotnumber)=b(1,1);

end
end
return;

Model Choice

The above listed choices of the feature vectors were tested in the preliminary

round for feasibility. Figure 3.10 shows some of the plots of the features proposed

above. The plots show the vector form of the DCT coefficients for the characters

‘MA’ & ‘NU’ plotted against the magnitude of the coefficients. In the first case,

all the coefficients are plotted. In the second case, only the DC components of

the 16 micro-blocks are plotted. The third case plots the DC coefficients of the 64

micro-blocks. The last row shows the plots of the DC components of the the 32

columns of the character image. These show that the features vectors are different

in each of the cases for both the characters.

The greater the euclidean distance between the feature vectors, the more dis-

criminated they are. It was observed that, all the feature vectors gave reasonably

good classification. For example, for the DC component feature vectors, the eu-

clidean distance between the feature vectors of the two characters ‘MA’ & ‘NU’

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 33

(a) DCT of Complete ‘Ma’ (b) DCT of Complete ‘Nu’

(c) ‘Ma’: DC components for blocksize 8 (d) ‘Nu’: DC components for blocksize 8

(e) ‘Ma’: DC components for blocksize 4 (f) ‘Nu’: DC components for blocksize 4

(g) ‘Ma’: DC components for columns (h) ‘Nu’: DC components for columns

Figure 3.10: Feature Vector plots for ‘MA’ & ‘NU’ respectively.

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 34

was about 10 units and about 16 units for the case of the feature vector consisting

of the DC and first AC coefficients for the blockwise DCT approach. This distance

was much larger for the feature vectors obtained using the DC coefficients of the

DCT applied to the rows and columns of the character image.

So for further investigation, we decided to test the feature vector which has

minimal time and space complexity. For this, the choice would have to be the

feature vector with the smallest size because the algorithm applied is otherwise

the same. Thus, it will be computationally least demanding to choose a small

feature vector. But, the results are scrutinized to check if this time and space

efficiency has reduced the accuracy of the classifier. If necessary, we have to make

some necessary changes to the feature extractor. To start with, the blockwise

2-DCT (see item 6 above) was chosen as it had the smallest size among all the

contending feature vectors: 1-by-16 and also was quite discriminating.

The euclidean distance along with 1-NN (or the 1-Nearest Neighbour) classifier

is used. The 1-NN is preferred over n-NN classifier because,

1. It is simple and fast to implement, and, more importantly,

2. It is the statistically better classifier, with a maximum of twice the error of

Bayes classifier (which statistically gives the least error). The result in this

regard is given in [TOU]4:

pB ≤ pe1 ≤ pB

(
2− M

M − 1
pB

)
(3.4)

where,

pe1 is the probability of error of 1-NN classifier,

pB is the Bayes probability of error, and,

M is the number of pattern classes under consideration.

The simplicity and the discriminating power of this feature were striking. The

results are discussed in the next chapter.

4see pages 81-83 of [TOU] for a detailed derivation of the proof

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 35

Building the Dictionary

There are two basic forms of training or learning:

1. Supervised

2. Unsupervised

For greater details, please refer to [DUD]5. We use the unsupervised learning.

The next part of the work is to build a good dictionary. The Indian languages

are rich in the variety of the character set. So, it is clearly not possible to build

the dictionary in one go. To start with, all the common characters can be added

to the dictionary. This forms the basis of the training phase. More sophisticated

training algorithms include the Neural Net with its now legendary (multi-layer)

back-propagation [TOU] algorithm so as to propagate the error to the source,

which enables it to minimize the error at all previous levels of the classifier.

In our case, we had a basic set of characters from the data collection phase.

The feature vectors of these characters were extracted and an initial dictionary

was built. A basic method to improve this dictionary which was implemented is

explained shortly.

In this work, we follow the unsupervised training, and use the Similarity

Measure approach. We tested two similarity measures:

1. Euclidean metric, in the <n space, n being the dimension of the feature

vector under consideration.

2. Canberra metric, which is known to have clustering properties.

Of these two, the canberra metric failed to give even reasonable results. So, the

similarity measure we used for later phases of the work is the euclidean metric

in <n. We have also implemented (again, in Matlab) in this work a facility we

thought up, and are of the opinion that it will help to improve the performance

5see p.414

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 36

of the extractor: a facility to add to the dictionary those characters that are not

presently in the dictionary. So, we came up with a scheme where the classifier

has two modes: Classifier mode and the Dictionary mode. In the classifier mode,

it requires no input from the user except that of the image file to be OCR-ed.

In the other mode, which is the interactive dictionary mode, the user is asked

after each character recognized, whether to add the character to the dictionary

or not. The user can refer to the character-dictionary (another file containing all

the characters whose feature vectors are currently in the dictionary) and decide

whether to add the character to the dictionary or not. Thus the user can use to

improve the performance of the classifier. As another application of this facility,

is the creation dictionaries for characters of different fonts or even different scripts

from the scratch.

It is here that the classifier output, the results of the feature extraction process

are put to test. The results in our case was a text file which contains the following

parameters:

Evaluation

This is the most critical part of the feature extraction process, as it is the

culmination of the above mentioned laborious phases.

1. The classifier code for the current character.

2. The Euclidean distance of the current character from the closest neighbour

in the feature extractor’s dictionary or database.

3. The Feature Vector of the current character under consideration.

4. The Feature Vector of the dictionary character to which the current character

has got mapped.

5. A binary representation of the current character, and

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 37

6. A binary representation of the character to which the current input character

has got mapped or classified.

Figure 3.11: A screen shot of the results file. Note that the character ‘Aa’ is

outlined by the 1s in the current and dictionary.

The format of the text file was chosen so as to contain all the necessary (but

minimal information, so as to keep file I/O to the bare minimum, as this affects

the time performance of the feature extractor) information for making a quick

decision for evaluation of the results which could otherwise take a long time. A

sample screen shot of the results file is given in figure 3.11.

For a simpler solution, the output can be in the form of the Unicode represen-

tation of the characters or output them in the ISCII format as a *.aci file which

are recognizable by standard Telugu text editors like i-Leap [SAC], but this would

require more sophisticated code. Since this work involved the prototyping of only

A Feature Extractor using Blocked DCT

3.2 The Feature Extractor(s) 38

the extractor, this was not implemented as it was considered outside of the scope

of this work.

All the algorithms were implemented in Matlab 7.0 R-14 and tested on an IBM

Think Center R-51 running Windows XP (service pack 2).

A Feature Extractor using Blocked DCT

Chapter 4

Results, Implementation &

Discussion

Karmanyeva Adhikaraste, Ma Phaleshu Kadachana.

-Bhagwadgita

This chapter presents the results obtained, and discusses some of the limi-

tations of the methods. It also discusses the future direction envisaged by the

project.

4.1 The Tests and Results

The first test was to give a randomly selected sample page. Later, the sample

used by Sachwani et.al., [SAC] was used to test the prototype. This sample is

shown in figure 4.1. The sample page was randomly picked up from the April 2005

issue of the spiritual magazine “Sanathana Sarathi”. A sample of 100 characters

was considered at a time and analysed. Then all the results were consolidated to

get the average performance. The samples are shown in figure 4.1.

A Feature Extractor using Blocked DCT

4.2 The Tests and Results 40

(a) The text used by Sachwani

et.al. [SAC]

(b) The sample text from

Sanathana Sarathi that was used

for the runs

Figure 4.1: Sample texts used

The results discussed here pertain to the 1-NN classifier with Euclidean Dis-

tances. The tests were also performed with the Canberra metric but, the results

were not satisfactory.

The results of the test are as tabulated in tables 4.1 and 4.3. We wish to point

out that the character-set in the dictionary used for the study of the DC coefficient

feature vector of size 8× 8 are not the same as those used for the other cases. The

former case underwent some learning. We also wish to mention that the image

was rotated be about 3-5 degrees (introduced fortuitously at the scan phase). So,

the results also show the tolerance (to rotation) of the method to a certain extent.

A Feature Extractor using Blocked DCT

4.2 Discussion 41

Description Blocksize Blocksize

8× 8 4× 4

Total # of characters 702 702

Total # of characters wrongly segmented 43 43

Total # of characters not in the dictionary 80 80

Total # of characters not being considered 123 123

Net # of characters to be considered 579 579

Total # of wrongly classified characters 55 24

Total # of correctly classified characters 524 555

% of characters correctly classified 90.50 95.86

Table 4.1: Results of the test for blocksizes of 8× 8 and 4× 4

4.2 Discussion

4.2.1 Implementation

This section analyses and explains the results obtained. The results show that

the performance of the test with the blocksize 8×8 is is poorer than that with the

blocksize 4× 4. The results in the latter case are comparable to those obtained by

Sachwani et.al., for the same fontsize. This may be attributed to the size of the

region in focus. In the earlier case, we considered a neighbourhood of a larger size.

This may be insensitive to the smaller changes in the neighbourhood. Changes in

one place may cancel out those in another. In the latter case, changes much more

minute are reflected in the feature vector.

The results are now analysed in the light of the implementation of the prototype

itself. The prototype was implemented in Matlab. The following are the steps of

the algorithm:

1. The input image is binarized with a threshold of 128.

A Feature Extractor using Blocked DCT

4.2 Discussion 42

Description All other sizes 8× 8 DC

Total # of characters 263 263

Total # of characters wrongly segmented 14 14

Total # of characters not in the dictionary 47 31

Total # of characters not being considered 61 45

Net # of characters to be considered 202 218

Table 4.2: Statistics for the tests on text used by Sachwani et.al.

Description Blocksize Blocksize

8× 8 4× 4

DC DC & 1AC DC DC & 1AC

Total # of wrongly classified characters 14 10 10 11

Total # of correctly classified characters 204 192 192 191

% of characters correctly classified 93.58 95.05 95.55 94.56

Table 4.3: Results of the test on the text used by Sachwani et.al.

2. The binarized image is then segmented into characters.

3. The segmented characters are then normalized to a matrix of size 32× 32.

4. This matrix is then subjected to the inbuilt dct2() function.

5. The integer part of the DC component of the DCT alone is taken and the

feature vector is generated.

The above algorithm brings to light many of the approximations that are im-

plicitly being assumed, some of which are listed here.

1. The threshold value may cause the binary image to be distorted and hence

cause the input to be noisy.

A Feature Extractor using Blocked DCT

4.3 Future Developments 43

2. The normalization of the characters uses intra/extrapolation. The Matlab

function uses the “Linear” method. This also may be a source of distortion

in the characters [TRI]1.

3. The dct2() function itself may be using a lot of approximations. Moreover,

since the program is running on a 32 bit machine, this itself may affect the

precision of the arithmetic involved.

4.2.2 Other Considerations

In our view, the most important part of the feature extractor is the dictionary.

The size of the dictionary is crucial to the performance. The larger the dictionary,

greater is the probability of misclassification. The method used in the prototype

can be improved. The current method segments the entire character. But, for In-

dian languages like Telugu, each character can be composed of smaller components

as explained in [SAC]. Their method uses the region-growing algorithm to segment

the connected components. This way, the common sub-components will be in the

database only once. Otherwise, all the permutations and combinations of the sub-

components will bloat the size of the dictionary and also introduce unnecessary

redundancy.

Another consideration regarding the size of the dictionary is the search time.

Currently, the prototype searches the database sequentially. This may not be a

good idea. For larger sizes of the database, the search time could grow exponen-

tially. Hence in such cases, a small sized database is preferred. Otherwise, a better

search algorithm like ‘Hashing’ or B+− tree can be implemented.

4.3 Future Developments

Here we summarize the suggestions made through out the report.

1see page 4 of [TRI]

A Feature Extractor using Blocked DCT

4.3 Future Developments 44

1. A more efficient DCT algorithm can be contemplated. Many fast algorithms

have already been proposed in the literature.

2. The normalization procedure used in this algorithm to resize the images,

needs to be reconsidered in light of what was mentioned earlier.

3. The segmentation procedure also needs to be reconsidered so as to efficiently

segment the images and to minimize the size of the dictionary as was men-

tioned earlier.

4. An integration of this prototype with the existing DMACS OCR will facili-

tate the use of the tested segmentation techniques implemented there.

5. Note that the DC component of the DCT is a simple average. Since we

are using only the DC component of the DCT, the DCT algorithm can be

simple replaced by a simple average of the block pixels in order to make the

code more efficient. A similar argument holds for the case of the DC & first

AC components.

6. As was mentioned earlier, the DC component was chosen from among the

many contending feature extractors for the simple reason that it seemed

to work well and was computationally the least expensive. But, feature

extractor formed by the concatenation of the row and column DC coefficient

seemed to give the best results. This too can be investigated in the light of

the previous comment.

7. Further coefficients of the DCT may also be considered in improving the

performance of the feature extractor.

8. Note that the euclidean distance classifies equally the points that lie on the

hypersphere in the <n space, where n is the size of the feature vector.

Hence, an alternative metric to the Euclidean distance can be considered.

In our opinion, a metric which would take into consideration the positional

A Feature Extractor using Blocked DCT

4.4 An analysis of the Dictionary 45

aspect of the elements of the feature vector should possibly yield better

results.

9. An additional task would be the integration of this system with a text-to-

speech system, which would be very relevant for use in educating blind/visually

impaired people.

4.4 An analysis of the Dictionary

(a) DC component Blocksize=8, θ = 2 (b) DC component Blocksize=8, θ = 5

(c) DC component Blocksize=4,

θ = 2

(d) DC component Blocksize=4,

θ = 10

(e) DC component Blocksize=4,

θ = 15

Figure 4.2: Plots of the DC component feature vector for the dictionaries

with blocksizes 8× 8 & 4× 4 ; θ is the eulidean distance.

We conclude the discussion of the results with an analysis of the dictionaries

themselves. The aim of the study is to check the difference between the feature

vectors in the dictionary using the same distance metric as the classification does.

If the dictionary reveals many feature vectors close together, it means that the

feature vector cannot be very discriminating. The results obtained in the tests

A Feature Extractor using Blocked DCT

4.4 An analysis of the Dictionary 46

confirm to this observation as is revealed in the following plots. The experiment

we set up was as follows:

The distances of each feature vector from all the other feature vectors were

calculated. This information was stored in a n × n matrix say Z. The element

Z(i, j) corresponds to the distance of the jth vector from the ith vector. That is,

the ith row of Z corresponds to the distances of the features vectors from the ith

feature vector. The vertical lines that are seen reveal that the distance between

some feature vectors is below the threshold θ. The x- and y- axes are the indices

of the feature vector in the dictionary (the order of the feature vectors in the

dictionary is fixed), and the z-axis is the distance axis. The point (x,y) can be

used to find out which of the feature vectors are close to each other within the

threshold θ.

(a) DC & 1stAC component Block-

size=8, θ = 2

(b) DC & 1stAC component Block-

size=8, θ = 10

(c) DC & 1stAC component

Blocksize=4, θ = 10

(d) DC & 1stAC component

Blocksize=4, θ = 25

(e) DC & 1stAC component

Blocksize=4, θ = 30

Figure 4.3: Plots of the DC & 1stAC component feature vector for the dic-

tionaries with blocksizes 8× 8 & 4× 4; θ is the eulidean distance.

A Feature Extractor using Blocked DCT

4.5 Conclusions 47

Note that the plots are symmetric about the plane x=y. So a study of one half

of the graph would suffice.

The figure 4.44.4 shows the plots.

Notice that there are many feature vectors within a threshold θ = 5 for the

DC components with blocksize 8. Whereas, for blocksize 4, θ = 2 and θ = 10, has

a negligible number of θ close feature vectors. Only at θ = 15, do the numbers

grow; but the number is still much less than that in the former case. The trend

slows down when it comes to the feature vectors with the DC and the 1st AC

component. The least problematic dictionary appears to be the case of DC & 1st

AC component feature vectors with blocksize 4× 4.

4.5 Conclusions

To summarize, the preprocessed image was segmented into its component char-

acters and then resized to a 32 × 32 image. The Block DCT was then applied to

the 16 micro-blocks of this image. The output DC coefficients were concatenated

to get one feature vector. Also, the DC and first AC coefficients were concatenated

to get another feature vector. These feature vectors were studied for their discrim-

inating power. The results are of the order of 95.6% accuracy in discriminating.

For characters of a single font, the DC coefficient feature vector seemed adequate

for most of the characters.

In conclusion, the Block DCT was found to be a reasonably good tool for

feature extraction purposes. Further investigation with the above mentioned en-

hancements would probably yield more optimum results.

A Feature Extractor using Blocked DCT

Appendix A

Sample Code

This appendix lists some of the Matlab code that implements the Feature

Extractor.

A.1 Binarization

function i=c_bin(image)
i=image;
[nx,ny]=size(i);
for countx=1:nx,

for county=1:ny,
if(i(countx,county) <= 128)

i(countx,county) = 1;
else i(countx,county) = 0;
end

end
end
return

A.2 Zig-Zag Feature Vector

function j=c_vectorize(image)

%initalize the first element
j=image(1,1);

A Feature Extractor using Blocked DCT

A.2 Zig-Zag Feature Vector 49

[nrows,ncols] = size(image);
%check for SQUARE matrix
if(nrows ~= ncols)

display ’Warning! : Not a square matrix..Aborting.’
return;

end
%traverse the upper triangle
count=1;
lower_triangle=0;
while(count~=nrows)

if(count~=nrows)
count=count+1;
j=c_xincr_ydecr(image,count,lower_triangle,j);

end
if(count~=nrows)

count=count+1;
j=c_xdecr_yincr(image,count,lower_triangle,j);

end
end
%traverse the lower triangle
count=1;
lower_triangle=1;
while(count~=nrows)

if(count~=nrows)
count=count+1;
if(rem(nrows,2)==0)

j=c_xdecr_yincr(image,count,lower_triangle,j);
else

j=c_xincr_ydecr(image,count,lower_triangle,j);
end

end
if(count~=nrows)

count=count+1;
if(rem(nrows,2)==0)

j=c_xincr_ydecr(image,count,lower_triangle,j);
else

j=c_xincr_ydecr(image,count,lower_triangle,j);
end

end
end

return;

A Feature Extractor using Blocked DCT

A.2 Zig-Zag Feature Vector 50

function j=c_xdecr_yincr(image,count,lower,j)

[nrows,ncols] = size(image);
if(lower==0)

bound=0;
countx=count;
county=1;
while(countx ~= bound)

j=c_appendarray(j,image(countx,county));
countx=countx-1;
county=county+1;

end
else

bound=nrows;
countx=nrows;
county=count;
while(county ~= bound+1)

j=c_appendarray(j,image(countx,county));
countx=countx-1;
county=county+1;

end
end
return;

%%

function j=c_xincr_ydecr(image,count,lower,j)

[nrows,ncols]=size(image);
if(lower==0)

bound=0;
countx=1;
county=count;
while(county ~= bound)

j=c_appendarray(j,image(countx,county));
countx=countx+1;
county=county-1;

end
else

bound=nrows;
countx=count;
county=nrows;
while(countx ~= bound+1)

A Feature Extractor using Blocked DCT

A.3 Feature Extraction for Blockwise DC coefficients 51

j=c_appendarray(j,image(countx,county));
countx=countx+1;
county=county-1;

end
end

return;

A.3 Feature Extraction for Blockwise DC co-

efficients

function c_blockwise(image)

bin_image = c_bin(image);
clipped_bin_image = clipallmargins(bin_image);
resized_clipped_bin_image=
imresize(clipped_bin_image,[32,32],’bilinear’);
i=1;j=1;k=8;l=8;
step=8;
x_direction = [1:1:8];
y_direction = [1:1:8];
plotnumber=0;
figure
for countx=0:3,

for county=0:3,
a=c_getsubmat(resized_clipped_bin_image,i+(countx*step),
j+(county*step),k+(countx*step),l+(county*step));
b=dct2(a);
c=c_vectorize(b);
plotnumber=plotnumber+1;
subplot(4,4,plotnumber),plot(c);

end
end
return;

A Feature Extractor using Blocked DCT

A.5 Metrics 52

A.4 Metrics

Canberra Metric

function dis = c_file_canberra(x,y)
dis=0;
[countx,county] = size(x);
for count=1:county

if(double(x(count))+double(y(count)) ~= 0)
dis = dis + (abs((double(x(count))-double(y(count))))
/(double(x(count))+double(y(count))));

end
end
return

Euclidean Metric

function dis = c_file_euclid(x,y)
dis = sum((int8(x)-int8(y)).*(int8(x)-int8(y)));
return

A.5 Run the Tests

function temp=get_test(filename,mode)
global dir;
%set the dir to the current directory.
dir=’D:\iimsc\scharan\Dissertation\Charan\M Files\
Modified For Files\My Files\Sample\’;
disp(’blockwiseDC 1AC size8’);
global c_count;
c_count=0;
temp=get_lines(filename,mode);
return;

%%%

function [character_line,count]=get_lines(filename,mode)
global dir;
%Obtains the characters from an image...
image=imread(filename);
image=c_bin(image);
[x,y]=size(image);
%initialize the character line
character_line=[];

A Feature Extractor using Blocked DCT

A.5 Run the Tests 53

character_line_count=1;
started_building=0;
finished_line=0;
count=0;
fid=fopen(strcat(dir,’sample.txt’),’w’);
%get the lines...
while(finished_line~=1)

for pixel_rows=1:x
temp_row=image(pixel_rows,:);
%reset the character row count
character_row=0;
for pixel_col=1:y

%do not go in again if a text pixel was found
if(character_row~=1)

if(temp_row(pixel_col)~=1)
pixel_col=pixel_col+1;

else
%found a text pixel !
character_row=1;

end
end

end
%Check if the pixel row had any text pixel...
if character_row==1

started_building=1;
character_line(character_line_count,:)=temp_row;
character_line_count=character_line_count+1;

else
%now we have populated the character line and found a
%line of pixels with no text pixel ! So, the line ends...
if(started_building==1)

finished_line=1;
count=count+1;
started_building=0;
for icount=1:character_line_count-1

fprintf(fid,’%d’,character_line(icount,:));
fprintf(fid,’\n’);

end
[a,b]=get_characters(character_line,mode);
character_line=[];
character_line_count=1;

end
end

A Feature Extractor using Blocked DCT

A.5 Run the Tests 54

end
end
fclose(fid);
return;

%%%

function [character,count]=get_characters(image,mode)
%initializations
[x,y]=size(image);
global c_count;
%initialize the character line
characters=[];
character_pixels_cols_count=1;
started_building=0;
finished_line=0;
count=0;
%get the characters, line by line...
while(finished_line~=1)

for pixel_col=1:y
temp_col=image(:,pixel_col);
%reset the charcter column count
character_col=0;
for pixel_row=1:x

%do not go in again if a text pixel was found
if(character_col~=1)

if(temp_col(pixel_row)~=1)
pixel_row=pixel_row+1;

else
%found a text pixel !
character_col=1;

end
end

end
%Check if the pixel row had any text pixel...
if character_col==1

started_building=1;
character(:,character_pixels_cols_count)=temp_col;
character_pixels_cols_count=character_pixels_cols_count+1;

else
%now we have populated the character and found a column
%of pixels with no text pixel ! So, the character ends...
if(started_building==1)

A Feature Extractor using Blocked DCT

A.5 Run the Tests 55

finished_line=1;
count=count+1;
started_building=0;
[cx,cy]=size(character);
c_count=c_count+1;

%CHOOSE THE CORRECT FILE HERE!
z=test_character_DC_1ACsize8(character,mode);
character_pixels_cols_count=1;
character=[];

end
end

end
end
return;

%%

function z=test_character_DC_1ACsize8(image,mode)
global dir;
global c_count;
%TEST THE NEW FEATURE FOR THE FILE
fid=fopen(strcat(dir,’results.txt’),’a+’);
%Get the blockwise DC feature vector
fv=int8(c_blockwise_DC_1AC_size8(image));
count=0;
global dictionary;
load(strcat(dir,’dictionary’));
[sx,sy]=size(dictionary);
for count=1:sx

z(count)=c_file_euclid(dictionary(count,:),fv);
end
%%%%%%%% all this is just to print results properly...

[a,b]=min(z);
Distance=a;
Index=b;
dict_const_fid=0;
if(b<=262)

dict_cont_fid=fopen(strcat(dir,’TEST_blockwise_DC_const.txt’),’r’);
dict_const_fid=dict_cont_fid;
c=b;

else
dict_cont_fid=fopen(strcat(dir,’TEST_blockwise_DC_vowel.txt’),’r’);
dict_const_fid=dict_cont_fid;

A Feature Extractor using Blocked DCT

A.5 Run the Tests 56

c=b-262;
end
temp=0;
for i=1:c-1

temp=fscanf(dict_const_fid,’(%d)\n’);
for i=1:32

temp=fscanf(dict_const_fid,’%c\n’,[1,32]);
end
temp=fscanf(dict_const_fid,’%c\n’,[1,16]);

end
if (mode==0)

fprintf(’LEARNING MODE\n’);
append_dictionary(image);

else
% ONLY CLASSIFICATION...

fprintf(fid,’===\n’);
character=image;
temp_character=clipallmargins(character);
temp_character=imresize(temp_character,[32,32]);
fprintf(fid,’(%d)’,c_count);
if(b>262)

Character_Index=(b-262);
fprintf(fid,’Vow :%d\t’,Character_Index);

else
Character_Index=b;
fprintf(fid,’Con :%d\t’,Character_Index);

end;
fprintf(fid,’ED : %d’,Distance);
fprintf(fid,’\n FVec : ’);
fprintf(fid,’%d’,fv);
fprintf(fid,’\n DFVec : ’);
fprintf(fid,’%d’,dictionary(b,:));
fprintf(fid,’\t\t\t\t\t\t\t\t’);
temp=fscanf(dict_const_fid,’(%d)\n’);
fprintf(fid,’(%d)\n’,temp);
for icount=1:32

fprintf(fid,’%d’,temp_character(icount,:));
fprintf(fid,’\t\t\t\t\t\t\t’);
temp=fscanf(dict_const_fid,’%c\n’,[1,32]);
fprintf(fid,’%c’,temp);
fprintf(fid,’\n’);

end

A Feature Extractor using Blocked DCT

A.6 Append the dictionary 57

temp=fscanf(dict_const_fid,’%c\n’,[1,16]);
fprintf(fid,’\n’);

end
fclose(fid);
return;

A.6 Append the dictionary

function append_dictionary(image)
global dir;
global dictionary;
character=image;
temp_character=clipallmargins(character);
temp_character=imresize(temp_character,[32,32]);
for count=1:32

fprintf(’%d’,temp_character(count,:));
fprintf(’\n’);

end
% load t_dict;
load(strcat(dir,’dictionary’));
load(strcat(dir,’nchars’));
load(strcat(dir,’vowel_count’));
fprintf(’Add to Dictionary ?(1-Yes, 0-No):’);
option = input(’’);
fprintf(’%d\n’,option);
if (option == 1)

fprintf(’appendimg...\n’);
%CHANGE THE FUNCTION FOR CALCULATING THE FEATURE VECTOR HERE ALSO.
fv=int8(c_blockwise_DC_1AC(image));
nchars=nchars+1;
dictionary(nchars,:)=fv;
save((strcat(dir,’nchars’)),’nchars’);
save((strcat(dir,’dictionary’)),’dictionary’);
fid=fopen(strcat(dir,’\TEST_blockwise_DC_1ACvowel.txt’),’a+’);
fseek(fid,-1,’eof’);
vowel_count=vowel_count+1;
save((strcat(dir,’vowel_count’)),’vowel_count’);
fprintf(fid,’(%d)\n’,vowel_count);
for count=1:32

fprintf(fid,’%d’,temp_character(count,:));
fprintf(fid,’\n’);

end

A Feature Extractor using Blocked DCT

A.6 Append the dictionary 58

fprintf(fid,’%d’,fv);
fprintf(fid,’\n’);
fclose(fid);

else
fprintf(’not adding...\n’);

end
return;

A Feature Extractor using Blocked DCT

Bibliography

[MAC] Machine Learning for Intelligent Processing of Printed Documents Flo-

riana Esposito, Donato Malerba, Francesca A. Lisi, Journal of Intelligent

Information Systems, 14, 175-198, 2000.

[CSR] CISRO

http : //vision.cmit.csiro.au/expertise/ocr

[IYER] Optical Character Recognition System for Noisy Images in Devanagari

Script, Parvati Iyer Abhipsita Singh Dr.S.Sanyal UDL Workshop on Optical

Character Recognition with Workflow and Document Summarization (OCR

& DS-2005)

[WIK] Wikipedia.org

http : //en.wikipedia.org/wiki/Optical character recognition

[SAC] OCR system for printed dravidian scripts using Uniform Sampling Tech-

niques, M.Tech project, SSSIHL, Sachwani, 2002.

[EAS] OCR system for printed Dravidian scripts using Gradient Based Contour

Encoding, M.Tech project, SSSIHL, Easwar, 2002.

[RAG] Deskwing techniques for font recognition for printed tamil texts, M.Tech

project, SSSIHL, Raghavan, 2003.

[TRI] Feature extraction methods for OCR - a survey, Ovind Due Trier, Anil K

Jain & Torfinn Taxt, Pattern Recognition, Vol 29, No.4, 1996.

A Feature Extractor using Blocked DCT

http://vision.cmit.csiro.au/expertise/ocr
http://en.wikipedia.org/wiki/Optical_character_recognition

[VER] Recent Achievements In Off-Line Handwriting Recognition Systems, B.

Verma, M. Blumenstein & S. kulkarni, School of Information Technology,

Griffith University - Gold Coast Campus PMB 50, Gold Coast Mail Centre,

Qld 9726 Australia.

[TOU] J. T. Tou and R C. Gonzalez, Pattern recognition principles, addison-

Wesley Publishing Company, Inc., 1974.

[PAT] A comparative study of neural network algorithms applied to Optical Char-

acter Recognition, P. Patrick van & Smagt.

[ALN] A FAX Reader for the Blind, Allen E. Milewski & Henry S. Baird , 24th

Annual Asilomar Conference on Signals, Systems, and Computers, Pacific

Grove, California, November 5-6, 1990.

[DUD] Pattern Classification, Second edition, Richard O. Duda, Peter E. Hart,

David G. Stork, John Wiley & sons, 2004.

[BRU] Recent Work in the Document Image Decoding Group at Xerox PARC,

Thomas M. Breuel and Kris Popat, Xerox Palo Alto Research Center 3333

Coyote Hill Road Palo Alto, CA 94304.

[ANL] Fundamentals of Digital Image Processing, Anil K. Jain, Prentice Hall

International.

[GON] Digital Image Processing, Second Edition, Rafael C. Gonzalez and Richard

E. Woods, Pearson Education, 2005.

[MYR] PZ Myers’ Own Original, Cosmic, and Eccentric Analogy for How the

Genome Works -OR- High Geekology,Wednesday, September 29, 2004

http : //pharyngula.org/index/science/comments/high geekology/

[RIC] Sidebar: Fundamentals of Frequency Conversion, Richard A. Quinnell,

TechOnLine Publication Date: Sep. 15, 2004

http : //www.techonline.com/community/edresource/feature article/37054

A Feature Extractor using Blocked DCT

http://pharyngula.org/index/science/comments/high_geekology/
http://pharyngula.org/index/science/comments/high_geekology/
http://www.techonline.com/community/ed_resource/feature_article/37054
http://www.techonline.com/community/ed_resource/feature_article/37054

[FRD] Discete cosine transform (DCT): What is it?

http://www.fh-friedberg.de/fachbereiche/e2/telekom-

labor/zinke/mk/mpeg2beg/whatisit.htm

[AHM] Ahmed, N., T. Natarajan, and K. R. Rao. On image processing and a

discrete cosine transform. IEEE Transactions on Computers C-23(1): 90-93,

1974.

[DHN] Object Tracking Based Robot Navigation using Particle Filters, Dhanu M.

Poulose ,M.Tech project, SSSIHL, march 2006.

[TDL] Technology Development for Indian Languages.

http://www.tdil.mit.gov.in

A Feature Extractor using Blocked DCT

http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/whatisit.htm
http://www.tdil.mit.gov.in
http://www.tdil.mit.gov.in

	Introduction
	The Context of this work
	Brief History of OCR
	Design of the Pattern Recognition System
	Sensing
	Segmentation & Grouping
	Feature Extraction
	Classification
	Post-Processing

	OCR: The Problem, Methods, & Techniques
	Scanning & Digitization
	Preprocessing
	Segmentation
	Feature Extraction
	Classification
	Post-processing

	The present work
	Applications
	Chapterization

	Previous Work on OCR for Indian Languages
	Introduction
	Preprocessing - A Brief survey
	Noise Filtering
	Deskewing
	Page Segmentation
	Font Recognition

	Feature Extraction & Classification methods
	Template Matching
	Deformable Templates
	Unitary Transforms
	Zoning
	Geometric Moments
	Zernike Moments
	Projection Histograms

	Existing OCRs for Indian Languages
	The DMACS OCR

	The DCT Based Feature Extractor
	Introduction
	Motivation
	The Discrete Cosine Transform: The Mathematics
	The Discrete Cosine Transform: The Pictorial Description

	The Feature Extractor(s)
	The Design Cycle

	Results, Implementation & Discussion
	The Tests and Results
	Discussion
	Implementation
	Other Considerations

	Future Developments
	An analysis of the Dictionary
	Conclusions

	Sample Code
	Binarization
	Zig-Zag Feature Vector
	Feature Extraction for Blockwise DC coefficients
	Metrics
	Run the Tests
	Append the dictionary

