
Multi-Dimensional Baker Maps for Chaos Based
Image Encryption

Project report submitted in partial fulfillment of the requirements for the

award of the degree of

Master of Technology in Computer Science

by

Sai Charan K.

(Regd.No.: 06554)

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

Sri Sathya Sai University, Prashanthi Nilayam

February 2008



DEDICATION

To the most cryptic of them all...to Enigma Himself

To him, whose cryptic smile is decrypted

In ways unique to each,

Every decryption correct

Unlike in the ordinary,

Making this phenomenon

A unique cipher.



SRI SATHYA SAI UNIVERSITY
(Established under Section 3 of the UGC Act, 1956)

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

CERTIFICATE

This is to certify that this project report entitled “Multi-Dimensional Baker
Maps for Chaos Based Image Encryption” being submitted by Sri. Sai Cha-
ran K. in partial fulfillment of the requirements for the award of the degree Master
of Technology in Computer Science is a record of bonafide research work car-

ried out by him under my supervision and guidance during the academic year 2007-08

in the Department of Mathematics and Computer Science, Sri Sathya Sai University,

Prashanthi Nilayam campus. To the best of my knowledge, the results embodied in

this project have not formed the basis of any work submitted to any other University

or Institute for the award of any Diploma or Degree.

Prof. V. Chandrasekaran,

Place: Prashanthi Nilayam Department of Mathematics and Computer Science,

Date: 15th February 2008 Sri Sathya Sai University, Prashanthi Nilayam.



ACKNOWLEDGEMENTS

I would like to express my gratitude to the Vice-Chancellor Sri A.V.

Gokak, the Registrar Prof. A.V. Lakshminarasimham, the Controller of ex-

aminations Prof. M. Nanjundiah and the Principal of the campus Prof. U.S.

Rao for the administrative support provided with regard to the project for-

malities.

I express my deep sense of gratitude to my supervisor Prof. V. Chan-

drasekaran for his infectious enthusiasm and for being such a wonderful spring

of ideas. Most of the work herein would not have been possible if not for his

out-of-the box ideas and lateral, non-linear, ‘chaotic’ thinking. I would also

like to express my thankfulness to Sri Uday Kiran, lecturer at DMACS for

the wonderful course work on Algorithms and Complexity and also for timely

advice regarding data-structures and implementation issues. Sri S. Balasub-

ramanian, research scholar at DMACS was very kind in helping me out with

some numerical algorithms. The critical review and invaluable comments of

Sri Srikanth Khanna, research scholar at DMACS have helped shaped this

thesis and the publications that were communicated to various conferences.

Mr. Krishnamoorthy was absolutely forthcoming in his support with soft-

ware, hardware and invaluable computing advice. Mr. Raghunath Sarma’s

support with lab and inspirational resources have been indispensible.

I would like to express my gratitude to the staff of DMACS for shaping

me through my tenure here at the department. In particular, I would like

to thank my HoD, Prof. K.S. Sridharan for his wonderful and efficient ad-

ministrative and infrastructure support. I would like to thank Prof. G.V.

Prabhakar Rao, Prof. C.J.M. Rao, Prof. Mrs. Tiwari, Prof. Jayaprakash,

Sri. Hanumanth R. Naidu, Sri. A.S.K Prabhakar and Sri. P.C. Rao.

Special thanks to Mr. Ravi Iyer for his discussions, insights and gyaan

on various issues and for showing interest in my work. Learning was never

more interesting and deep! I cannot forget the wonderful tidbits provided

by Sri Lakshmi Narayan. Thanks are due for our network administrator

Sri. Renju Reghuveeran for his supportive internet facility without which

i



progress would have stalled. Thanks to the library and the librarian for

extending their services.

My parents and brother were very supportive and understanding each

time I told them that I needed to rush as I had my project to do! I have a

special word of gratitude and love for Saketh, Aditya, Swagat and Amartya.

Thanks to my cousin Kesh for prodding me into thinking through his deep

questioning.

I must confess that the world is still a very humane place. Myriad blog-

gers, freelance writers, professors, companies and professionals have invested

time and resources in making the internet a wonderfully rich and highly

searchable database. Google has really made research more palatable and

collaborative. The on-line community and public fora have been very sup-

portive and responsive to questions. The professors of the field were very

kind in mailing me their work and suggestions whenever needed. Thanks to

the internet and all its open users for their kind support.

Of course there are my classmates and juniors who provided me with

wonderful moral support through out the project by just enquiring about

my progress. Special mention must be made of Shiva Kumar K. for lending

his ear to the rant on my work. It helped me think aloud. Thanks to Sriman,

KG, TV, Praveen, Rampy, Sandy, Nagi, Vishnu, Kalyan and Arun for being

such a nice bunch.

Thanks to Sunil and Shyam for educating me on other areas of security

like secure hashing and digital watermarking. Thanks to Andy, Sunny and

Sashi for being great system admins. Thanks to Nivas, Rahul, Padhu and the

rest for their spirit of enquiry and for pelting me with question and thereby

adding to my KB.

ii



PREFACE
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ter 4.

2. “Integrated Confusion-Diffusion Mechanisms for Chaos Based Image

Encryption”, submitted to the IEEE Conference on Computer and In-

formation Technology, 2008 (IEEE CIT ’08), Sydney, Australia. This

paper consists of the work detailed in chapter 6.
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ABSTRACT

Security is an integral part of every technology and implementation today.

In this IT driven society, cryptography is perhaps the most widespread form

of secure communication.

Chaotic functions have certain properties which lend them directly to en-

cryption schemes. Of special interest in this regard are sensitive dependence

on initial conditions, topological transitivity and dense periodic orbits. These

translate to input avalanche effect, mixing and ergodicity in cryptography.

We first implement an existing algorithm and verify the claims of the

authors. We then investigate higher dimensional Baker maps for image en-

cryption. For this, we first propose a new interpretation for the Baker map in

terms of a path function S. We then apply the higher dimensional maps for

image encryption and experimentally conclude that 3D Baker map suffices

for encryption. That is, there is no perceptible performance gained when

using higher dimensional Baker maps.

Next, in an attempt to use chaotic maps for the diffusion mechanism in

the encryption scheme, we embed the diffusion process into the confusion

process. For this, we first propose an alternative view of a 2D image as a

3D structure using the binary representation of the image intensity values.

We extend this scheme from grayscale images to color images and show its

immense value in color image encryption.

Lastly, we propose a Baker map based on random walk of the image.

Here, we employ sparse decomposition of images as a method of generating

the random paths. Random walk based Baker maps would be more difficult

to break than traditional Baker maps because of the chaotic behavior in the

walk itself.

Since statistical attacks on encryption schemes use the histograms of the

encrypted image, a key requirement of the encryption process is to flatten the

histogram. We introduce the use of Mean Squared Error of the normalized

histogram as a measure of the flatness of the histogram. We also employ other

standard performance metrics to evaluate the proposed encryption schemes.
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Chapter 1

Introduction

What affected me most profoundly was the realization that the sciences of

cryptography and mathematics are very elegant, pure sciences.

-James Sanborn

1.1 Motivation

Your lawyer has e-mailed asking for your company’s tax returns. You

consider sending it by e-mail. Wait! Is it a good idea? Will it reach safely?

Will it be tampered with along the way? Will it fall in the hands of your

competitors? How do you know if it was your lawyer’s email in the first

place(!)? These are not easy questions to answer.

You then start thinking: Can I securely send the email to my lawyer

at all? The e-mail is transmitted over the internet which is essentially an

insecure network. Can I still prevent unauthorized people from getting it.

So there are chances that the e-mail could be intercepted. Is there anything

I can do to keep my message/information confidential inspite of the e-mail

being intercepted? What if the e-mail servers are compromised? After all,

they are directly on the internet! What if the sys-admin is a bad guy? He

has access to the entire system!!! Assume that the e-mail was somehow sent

without being compromised. How will my lawyer know that the e-mail was

1



1.1 Motivation 2

from me and not someone else masquerading to be me? Can he verify that

the information has not been modified along the way?

Consider another example: every commercial medical information system

needs to store large amounts of medical images of patients scans, x-rays etc.

in their databases. There are very stringent legal requirements leading to

strict security measures for such systems in order to protect the privacy of

the patients. Also, it is not enough to have encryption schemes for just gray-

level images, since large number of medical applications require full color

processing. Tele-medicine requires experts across the globe to collaboratively

diagnose ailments. For this, we need secure mechanisms for transmitting

patient images over the insecure internet. Image encryption could be used

for the secure transmission of images over the internet.

However, we wish to point out that security is not a modern require-

ment. Consider the epic Ramayana. Why did Lord Sri Rama give his ring to

Hanuman before he left for Lanka? It was a security mechanism that Mother

Sita could use to authenticate that Hanuman, who was a stranger to Mother

Sita, was actually a messenger of her Lord1. Further, Mother Sita gave her

choodamani to Hanuman as a proof of their meeting.

Encryption and cryptography thus play a vital role in online transmission,

off-line image-archival and retrieval systems. It is therefore essential that in

this information technology driven society, information security is an integral

part of every technology. We endeavor to make digital transmission/archival

as secure as if the message were personally delivered or stored in a physi-

cal safe storage vault. The above examples elaborately describe the typical

problems and requirements that are addressed by Security. The buzzwords

of security are [1, 2]:

• Confidentiality: Keeping a message secret.

• Authentication: Ability to verify the claimer’s identity.

• Integrity: Ability to verify that the message has not been tampered

1Thanks to Sunil Kumar GMBS for this insight.
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with.

• Non-repudiation: Ability to ensure that a party in a dispute cannot

repudiate, or refute the validity of a statement or contract[3].

There are many security mechanisms available to realize these require-

ments including encryption, digital signatures, message digests or message

integrity code (MICs), digital watermarking, steganography etc. Note that

more than one of these technologies need to work synergistically in order to

be effective.

Cryptography is the art and science of securing messages. It “is the

practice and study of hiding information”[4]. It attempts to make sure that

the message is comprehensible only to the ‘legal’ recipient of the message - the

person for whom it is intended. The aim here is that even if an unintended

person gets hold of the message, he will not be able to make sense of it with

out the key. Much as with a good lock. Anyone can find their way to your

home, but cannot get in without the key. In cryptography the key is some

information that the sending and receiving parties agree upon. If the agreed-

upon information is a secret message, we are in the domain of symmetric-key

cryptography. Its counter part is public-key or asymmetric-key cryptography.

Cryptography is just one security mechanism to keep away prying eyes

(or ears). There have been (and still are) many internationally accepted

algorithms for encryption. For example, DES, BlowFish, PGP, RSA, IDEA,

AES etc. Mathematically, cryptography has certain unique requirements:

diffusion, confusion and dependence on keys.

Here is where Chaos theory comes in. Chaos theory is a branch of

mathematics that deals with non-linear phenomena. These phenomena in-

clude weather, financial markets, organizational behavior, predicting epilep-

tic seizures, fractals and other complex real-world physical phenomena. Chaotic

phenomena are characterized by the fact that they are seemingly random, but

have a precise mathematical formulation. Hence, given some other param-

eters they are repeatable/reproducible/predictable and yet apparently ran-

dom. The properties required by cryptography are readily satisfied by chaotic
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functions via their properties of (a)sensitive dependence on initial conditions

(function parameters), (b)topological transitivity and (c)ergodicity (random-

ness) [5, 6, 7, 8, 9]. This makes chaos theory a good, attractive option for

cryptography. Thus we see that Chaos theory has come a long way from the

time a butterfly flapped its wings in the minds of Feigenbaum and Lorentz,

especially in its application to cryptography and to image encryption[5].

1.2 Problem Definition

Mao et al.[5] propose an elegant image encryption system based on Baker

maps where the 2D Baker map is extended to three dimensions, with the

extension is being more chaotic. Further, tremendous speedup of the en-

cryption process was achieved. Inspite of these promising results, there has

been no further investigation regarding use of higher dimensional maps for

efficient and fast image encryption.

In the further course of our study of chaos based cryptography, we ob-

served that most of the image encryption algorithms use separate confusion

and diffusion mechanisms. However in all these works, chaos theory plays a

role only in the confusion. The diffusion mechanism does not use any chaotic

functions. The purpose of employing chaos theory in encryption is to use its

features to a greater advantage - something that has not been exploited to

its fullest. We are of the opinion that chaos theory can play a vital role in

all parts of the encryption scheme.

1.2.1 Contributions of the Thesis

We first set out to investigate the use of higher dimensional Baker maps

for efficient, fast image encryption. We start by providing a new geometric

interpretation of the Baker map. Using the geometric view, we propose a

generalization of the Baker map to any arbitrary dimension. We investigate

4D and 5D Baker maps for image encryption.

Incidentally, the geometric view of Baker maps generates a multitude of
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possible Baker maps. We analyzed Baker maps from a geometric walk point

of view. Each different walk yields us a different Baker map formulation, the

most general of them being a random walk based Baker map. We propose

a random walk based on sparse decomposition of images. We then use this

random walk based Baker map for image encryption.

In order to employ chaos theory to a larger extent, we try and combine

the confusion and diffusion mechanisms using some chaotic functions. When

we consider the binary representation of the intensities of the image at each

pixel location, we observe that every image is inherently 3D in nature. The

working of the diffusion mechanism - a substitution function of the gray-

level intensities - motivated us combine confusion and diffusion by a common

mechanism on the 3D view of the image, using chaos theory.

In summary, we provide a

• generalized formula for the n-D Baker map based on geometric walks

and study their performance in image encryption.

• way to integrate confusion and diffusion mechanisms.

• random-walk based formulation of the Baker map for image encryption.

1.3 Outline of the Thesis

Chapter 2 reviews the current literature on the subject of chaos based

image encryption. In chapter 3 our implementation of the encryption sys-

tem is summarized and the differences from that implemented by Mao et

al.[5] are discussed. Chapter 4 details the proposed n-dimensional extension,

while chapter 5 explores the possibility of integrating diffusion and confusion

mechanisms. Chapter 6 extends the concept of Baker maps to include ran-

dom walks. We conclude the thesis with a discussion of the work and list

some future work in this regard (chapter 7).



Chapter 2

A Brief Survey of Literature

If I have seen farther than other men it is because

I have stood on the shoulders of giants.

-Sir Issac Newton

If I have seen less far than other men it is because

I have stood behind giants.

-Edoardo Specchio

2.1 The Genesis

Cryptography has been around for a rather long time. The most ancient

and perhaps the most simple cipher is the Ceaser cipher which is a simple

cyclic shift of the english alphabet by a fixed number of alphabets. For

example, “RETURN TO ROME” would become “UHWXUA WR URPH”

using 3-shift. However, it is the Lord-God-Almighty of information theory

- Claude E. Shannon who is widely recognized and honored as the father of

modern cryptography.

Also, the seed for using chaos theory in encryption seems to have been

laid more than half-a-century ago, again by Claude E. Shannon himself. He

writes in his celebrated work[10]:

6



2.2 A Gentle Introduction to Cryptography 7

“Good mixing transformations are often formed by repeated prod-

ucts of two simple non-commuting operations. Hopf has shown,

for example, that pastry dough can be mixed by such a sequence

of operations. The dough is first rolled out into a thin slab, then

folded over, then rolled, and the folded again, etc.”

His reference to good mixing transformations appears to be a direct allu-

sion to modern day chaos theory.

2.2 A Gentle Introduction to Cryptography

As mentioned in the introduction, cryptography is the art and science

of securing messages. Cryptography is realized through encryption and de-

cryption procedures. Encryption is a modification of the message in such

a way that its content can be reconstructed only by a legal recipient, while

decryption is the reconstruction of the original message from the encrypted

message (also called cipher-text). A cryptosystem implements the encryption

and decryption mechanisms. Mathematically, a discrete valued cryptosystem

is defined by a set of possible:

• plaintexts P

• ciphertexts C

• cipherkeys K

• encryption and decryption transforms, E and D

For each key k ∈ K, ∃ an encryption function e(k, .) ∈ E and a corresponding

decryption function d(k, .) ∈ D, such that for each plaintext p ∈ P , the

condition for unique decoding, d(k, e(k, p)) = p is satisfied.

Kirchoff’s principle for cryptosystems assumes that the an opponent

knows the structure of the encryption scheme and has access to the ciphering

mechanism and claims that inspite of this, the opponent will be unable to

decipher any encrypted message without the key.
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Encryption systems are classified as block and stream ciphers. Another

classification divides the encryption algorithms between symmetric and asym-

metric or private and public key algorithms. Block ciphers act on a block

- a fixed length of data - of plaintext. Examples of this type of ciphers are

DES, IDEA, BlowFish and AES. Block ciphers work in ECB mode or CBC

mode. In ECB or Electronic Code Book mode, a look-up table is used for

encryption. This has the inherent weakness that identical blocks of plain

text yield identical cipher texts. To over come this weakness, CBC or Cipher

Block Chaining was introduced. In this mode, the previously yielded cipher

block is used in the encryption of the current block of plain text, thus intro-

ducing dependencies between ciphered blocks and eliminating the problem

that exists with ECB mode. Another common mode is the CFB or Cipher

Feed-Back mode. In stream ciphers, a stream of pseudo-random bits, called

a key-stream, are used to encrypt the plaintext. The plaintext is treated

as a stream of data and this stream is operated with the pseudo-random bit

stream, for example, by XOR operation. Example of stream ciphers are RC5,

BSAFE etc.

Symmetric encryption algorithms use the same key for encryption and

decryption while asymmetric key algorithms use a different key for encryption

and decryption. Example of public-key or asymmetric key algorithms is the

RSA algorithm.

There are many ways to compromise an encryption system. This field of

work is called cryptanalysis. An attempt at cryptanalyzing the cipertext is

termed an attack. The most common among them are:

• Cipher-text only attack: Opponent will be able to get some ciphertext

and his goal is to reveal as much plaintext as possible, better still,

deduce the cipher key.

• Known-plaintext attack: The attacker has plaintext-ciphertext pairs.

The goal is to deduce the cipher key.
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• Chosen-plaintext attack: The opponent has plaintext-ciphertext pairs

and can choose any plaintext of his choice and obtain the corresponding

ciphertext.

• Chosen-ciphertext attack: The attacker can choose different ciphertexts

and obtain the corresponding plaintexts!

A rather straight forward type of attack is to conduct an exhaustive

search of the keyspace. But, for large keyspaces, this is prohibitive un-

less the attacker has some additional information regarding the structure

of the keyspace. Another type of attack is called differential attack where

the attacker studies the effect of the encryption system on marginally differ-

ing plaintexts and use this information for breaking the encryption system.

Cryptography and cryptanalysis together are referred to as cryptology. For

further reading, the reader is urged to look at [1, 2, 11].

2.3 An Orderly Introduction to Chaos

Consider a discrete dynamical system with the general form[6]:

xk+1 = f(xk), f : I → I, x0 ∈ I, (2.1)

where f is a continuous map on the interval I = [0,1]. This system is said to

be chaotic if the following conditions are satisfied:

1. Sensitive dependence on initial conditions:

∃δ ≥ 0 ∀x0 3 I, ε ≥ 0,∃n ∈ N, y0 3 I such that

| x0 − y0 |≤ ε =⇒ | fn(x0)− fn(y0) |≥ δ.
(2.2)

2. Topological Trasitivity:

∀I1, I2 ⊂ I,∃x0 ∈ I1, n ∈ N 3 fn(x0) ∈ I2. (2.3)

3. Density of periodic points in I:

Let P = {p ∈ I 3 ∃n ∈ N 3 fn(p) = p} be a set of periodic points of

f . Then P is dense in I: P̄ = I.
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In plain english, the above definition of chaos says that (a)if any condi-

tion in the system changes at any time, we get a drastically different end

system (b)every point in the space can evolve into every other point with

equal probability and (c)almost (well, almost) every point will come back to

itself after some evolution. Three words describe these conditions succinctly:

(a)Expoential divergence, (b)Ergodicity and (c)Mixing.

Chaos theory is best summarized in terms of Lorentz’ Butterfly Effect

which says:

“...the flap of a butterfly’s wings in Borneo could lead to a hurri-

cane in Florida.”

2.4 The Marriage: Chaos Based Cryptogra-

phy

Pichler and Scharinger were the first to use chaotic 2D Baker map for

encryption purposes[12, 13]. Soon after, Fridrich[14, 15, 16] generalized the

process and provided the following general framework for chaos based en-

cryption.

A chaotic map is first generalized by the introduction of parame-

ters and then discretized to a finite square lattice of points which

represent pixels or some other data items.

This framework is exemplified in [17] which we summarize in detail in section

2.5.3. However, the work proposed by Fridrich was limited to a square. In

[18], Baptista encrypts each character of the message as the integer num-

ber of iterations performed in the logistic equation. The intention being to

“transfer the trajectory from an initial condition towards an ε-interval inside

the logistic chaotic attractor”.

In [19] Kocarev discusses lots of points regarding the strong relation be-

tween chaos and cryptography. This seems to have encouraged a lot of re-

search in this area in the following years. The work by Kocarev et al.[7] was



2.4 The Marriage: Chaos Based Cryptography 11

another initial attempt to explore the relation between chaos and cryptog-

raphy in more mathematical terms. Jakimoski[20] introduces a few block

encryption ciphers and shows that they do not perform worse than standard

block ciphers. Amigo et al.[21] address the basic definitions of discrete chaos

and discusses the possible limitations of chaos based crypto systems. Al-

varez and Shujun Li[8] draw from the couple of decades of research in the

area of chaos based cryptography and outlines some basic requirements for

building secure crypto systems based on chaos. It also serves as an excellent

bibliography for this field.

Masuda et al.[22] use the tent map and a modified Baker map based on

the shifting of the “center point” of the partition for the Baker map. Wang

et al.’s work[23] is an initial attempt at introducing diffusion at the confusion

stage by the introduction of sequential add-and-shift operations. However,

it still has a separate diffusion step and does not use chaotic functions for

diffusion. The aim here was to reduce the number of iterations required for

a given level of security.

Shujun Li et al.[24] provide an excellent review of the state-of-the-art for

chaos based encryption. The paper starts with the need for special algo-

rithms for encryption of images is discussed. Some of these reasons include

(a)bulk data capacity, (b)encryption Vs. compression, (c)redundancy, (d)loss

of avalanche property, etc. The paper then goes on to do a comprehensive

survey of chaotic encryption schemes for images and videos. They conclude

with valuable lessons learnt. This work also doubles up as a comprehensive

bibliography for this field. Other work in this field includes CKBA: Chaotic

Key Based Algorithms and their cryptanalysis. Shujun Li’s PhD. thesis[25]

also has an excellent survey of the state-of-the-art in chaos based cryptogra-

phy.

2.4.1 Migration to discrete chaos

Chaos has traditionally been in the analog domain. Properties like sensi-

tivity to initial conditions, ergodicity etc., tend to degrade when the contin-
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uous chaotic functions are discretized[17]. For example, Mao et al.[17] show

that the discretized Cat map ‘returns’ after a certain number of iterations.

Hence, the discretization procedure must take into account the loss of such

properties of traditional chaotic maps (see section 2.5.1 of [25]).

2.5 Kolmogrov Flow, Baker Map and Cat Map

The Kolmogrov flow, the Baker Map and Cat map are permutation maps.

While Kolmogrov Flow and Baker map have a lot of similarity1, the work on

Cat map by Mao et al.[17] provides a good insight into the working of the

framework provided by Fridrich[14], as mentioned earlier.

2.5.1 The Kolmogrov Flow

The continuous Kolmogrov function is a permutation on the unit square

(refer to [26]) for further details). The unit square is divided into a partition

π = (p1, p2, ...pk), 0 < pi < 1 and
∑k

i=1 pi = 1 of the unit interval I. The

squeezing and stretching factors pi, qi are defined by qi = 1/pi. Define Fi

as F1 = 0 and Fi = Fi−1 + pi−1. Fi denotes the left-border of the vertical

strip containing (x, y). Then, the continuous Kolmogrov function Tπ(x, y) is

a defined by eqn.2.4.

Tπ(x, y) = (qi(x− Fi),
y

qi

+ Fi), (x, y) ∈ [Fi, Fi + pi)× [0, 1) (2.4)

The discrete Kolmogrov flow is defined over the discrete block of size n× n,

defined by a partition δ = (n1, n2, n3, ..., nk), 0 < ni < n with
∑k

i=1 ni = n.

The only restriction on the partition δ is that each ni should partition the side

of length n; ie. ni divides n. We define qi = n/ni and let Ni = Ni−1 + ni−1,

with N1 = 0. The discrete Kolmogrov map Tn,δ is defined by eqn.2.5.

Tn,δ(x, y) = (qi(x−Ni) + y mod qi), (y div qi) + Ni). (2.5)

1Thanks to GMBS Sunil for the enlightening discussions on the Kolmogrov flow which

clarified the relations and differences between the Kolmogrov flow and the Baker map.
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The analog and the discrete functions can be described as vertically com-

pressing/squashing the vertical strips and stretching them in the horizontal

direction, as is evident from the x and y coordinate terms of the formula.

Scharinger[26] proves that this discretization satisfies the ergodicity, sensi-

tive dependence on parameters and mixing properties. It also demonstrates

the application of this discrete Kolmogrov map for image encryption, cryp-

tographic message digests and digital watermarking. With this definition in

mind, note how similar the Kolmogrov flow is to the Baker Map which is

discussed next.

2.5.2 The Baker Map

The Baker Map is not a formula, it is a concept.

In [14], the continuous chaotic map is first discretized and then generalized

by introducing parameters. This generalized, parametrized map is used in

the encryption with the encryption key forming the parameters of the chaotic

function. This work was extended from two to three dimensions by Yaobin

Mao et al.[5, 17] for both the Baker[5] and the Cat maps[17]. We now sum-

marize the main features of the Baker map.

The continuous 2D Baker map is defined by:

B(x, y) =

{ (
2x, y

2

)
, 0 ≤ x < 1

2(
2x− 1, y

2
+ 1

2

)
, 1

2
≤ x ≤ 1

(2.6)

while the continuous 3D Baker map is defined in [5] as:

B(x, y, z) =

(
2x, 2y, z

2

)
, 0 ≤ x < 1

2
, 0 ≤ y < 1

2(
2x, 2y − 1, z

4
+ 1

2

)
, 0 ≤ x < 1

2
, 1

2
≤ y ≤ 1(

2x− 1, 2y, z
4

+ 1
4

)
, 1

2
≤ x < 1, 0 ≤ y < 1

2(
2x− 1, 2y − 1, z

4
+ 3

4

)
, 1

2
≤ x ≤ 1, 1

2
≤ y ≤ 1

(2.7)

The 2D function is a mapping on the unit square. It has the effect of

vertically compressing the right half of the unit square and converting it
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to the lower half of the unit square by stretching it horizontally as shown

in fig.2.1. This is achieved by first dividing the domain (in this case, the

unit square I × I) into thin strips (in this case, two strips). Eqn.2.8 is the

generalization of the 2D Baker map[5], generalized by the introduction of an

arbitrary number of partitions or horizontal strips.

B(x, y) =

(
1

pi

(x− Fi), piy + Fi

)
, (x, y) ∈ [Fi, Fi + pi), i = 1, 2, 3, ... (2.8)

where F0 = 0 and Fi = p1 + p2 + . . . + pi, i = 1, 2, 3, . . . with pi being

the width of the ith partition/strip. We point out, however, that there is a

small discrepancy in the above formula. Notice that i starts at 1. Given the

interval [Fi, Fi + pi), i = 1, 2, 3, ..., we see that the above formula does not

take into account points in the interval [0, F1). Further, if we simply reset the

counter i, to start counting from 0, we find that p0 is not defined and hence

this modification does not correct this discrepancy. Instead, we rewrite the

formula as in eqn.2.9.

B(x, y) =

(
1

pi

(x− Fi−1), piy + Fi−1

)
, (x, y) ∈ [Fi−1, Fi−1 + pi), i = 1, 2, 3, ...

(2.9)

This formula was obtained by replacing all occurrences of Fi with Fi−1.

The term (x − Fi−1) can be interpreted as the distance of the point x from

the previous partition and 1/pi gives the amount of stretching (since in this

case pi is less than 1). Thus the x-coordinate in eqn.2.9 gives the absolute

amount by which the x-coordinate is stretched. Similar interpretation can

be deduced for the y-coordinate.

The 2D Baker map vertically compresses the first strip, simultaneously

stretching it horizontally and places it along the x-axis. It compresses the

second strip and places it over the first compressed strip. In general, any

number of strips can be used.

The action of the 3D continuous Baker map can be described as follows:

the domain, (in this case, the unit cube I × I × I), is first divided into thin

sub-cubes (in this formula, four strips). The 3D Baker map compresses the

first sub-cube in the z-direction, simultaneously stretching it in the x- and y-
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Initial configuration After applying Baker map

Figure 2.1: Action of Baker map on the unit square.

directions, and places it on the x-y plane. It compresses the second sub-cube

and places it over the first compressed cube and so on. As before, in general,

any number of sub-cubes can be used, the only caveat being that we should

compress to a different extent!

2.5.2.1 Discretization of the 2D & 3D Baker maps

As defined in [5], the 2D Baker map is given by:

Bd(r, s) = (N
ni

(r −Ni) + s mod N
ni

, ni

N
(s− s mod N

ni
) + Ni) (2.10)

which can also written as

(r, s) = Bd(i, j)

= (b(Mi−1 ×N + j ×mi + i−Mi−1/Mc),
(Mi−1 ×N + j ×mi + i−Mi−1) mod M)

(2.11)

where we consider a square of side M ×N , with Mi = m1 + ... + mi, M0 = 0

and M = m1 + ... + mk for some integer k. The 3D discrete Baker map is

given by:

S(m, n, l) = (Hj−1×W +Wi−1)×L+wi×hj×l+(n−Hj−1)×wi+(m−Wi−1).

(2.12)

The discretization is defined as follows:

(m′, n′, l′) = B3D(m, n, l)

= ((S mod (W ×H)) mod W, bS mod (W×H)
W

c, b S
W×H

c).
(2.13)
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with Wi = w1 + w2 + ... + wi, W = w1 + w2 + ... + wk and W0 = 0, and

Hj = h1 + h2 + ... + Hj; H = h1 + h2 + ... + ht and H0 = 0, for some integers

k, t satisfying the above requirements.

Here again, we correct a discrepancy as in the case of eqn.2.8. Eqn.2.12

is rewritten as eqn.2.14:

S(m,n, l) = (Hj−1 ×W + Wi−1)× L

+wi−1 × hj−1 × l

+(n−Hj−1)× wi−1 + (m−Wi−1).

(2.14)

Note that eqn.2.14 is obtained by replacing all occurrences of wi, hj with

wi−1 and hj−1 respectively. We now move on to a discussion of the Cat map.

2.5.3 The Cat Map

Eqn.2.15 gives the analog formula of the discrete Cat map on the unit

square where xn and yn are the coordinates of the point under consideration.[
xn+1

yn+1

]
=

[
1 1

1 2

] [
xn

yn

]
mod 1 (2.15)

This is generalized by the introduction of a and b as the parameters.[
xn+1

yn+1

]
=

[
1 a

b ab + 1

] [
xn

yn

]
mod 1 (2.16)

This parametrized map is then extended to 3D as follows:
xn+1

yn+1

zn+1

 = Az


xn

yn

zn

mod 1 (2.17)

where,

Az =


1 az 0

bz azbz + 1 0

0 0 1

 (2.18)



2.5 Kolmogrov Flow, Baker Map and Cat Map 17

As is evident from the formula, the number 1 at the right bottom of the ma-

trix Az indicates that we leave zn unchanged, essentially performing 2D cat

map in the x-y plane, leaving the z-coordinate unchanged. Similar expres-

sions are provided for matrices Ay and Ax, where the y- and x- coordinates

are left unchanged respectively[17]. These formulae are then combined to

give a general 3D Cat map of the form:
xn+1

yn+1

zn+1

 = A


xn

yn

zn

mod 1 (2.19)

where A is a matrix function of the parameters az, bz etc. and is given by

eqn.2.20:


1 + axazby az ay + axaz + axayazby

bz + axby + axazbybz azbz + 1 ayaz + axayazbybz + axazbz + ax

axbxby + by bx axaybxby + axbx + ayby + 1


(2.20)

We point out that Mao et al.[5] do not explicitly provide a method of

combining Ax, Ay and Az to arrive at the formula for matrix A. However, we

have verified that a product of the these three matrices will give the matrix

A. Hence we propose taking a product of the matrices Ax, Ay and Az as a

good method to obtain generalized maps, provided that the maps have a

matrix notation and we are able to provide matrix formulae equivalent to

Ax, Ay and Az.

The next chapter details the description of the image encryption algo-

rithm as described in Mao et al[5]. We have implemented this algorithm and

verified the claimed results.



Chapter 3

Baker Map Based Image

Encryption

I hear and I forget, I see and I remember, I do and I understand.

-Chinese Proverb

3.1 Baker Map Based Image Encryption

This chapter presents the detailed implementation of the chaos based

image encryption algorithm that we implemented. The procedure that we

present here was implemented and tested and is based on the work of Mao

et al.[5, 6]. In turn, their work is based on the general framework provided

by Fridrich[14] (see chapter 2).

3.2 The Encryption Algorithm

The algorithm is a five-step process as described below:

Step 0: Preprocessing. The Baker map is first discretized as described in

section 2.5.2.1.

Step 1: Key Generation. A string of length 16 characters (128 bits) is

chosen. The 128 bits are then split into six groups. The first four groups

18
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contain 24 bits each and the last two groups contain 16 bits each. These

six groups are mapped into six numbers: three integers (k4, k5, k6) and three

floating point numbers (k1, k2, k3) in the range (0, 1). While Mao et al. do

not provide a method for “mapping” the bits into these numbers, we have

used the following method. For the first four groups, three characters at a

time are converted to an integer. For the last two groups, two characters

at a time are converted into integers. To get the floating point numbers

in the range (0, 1), we merely divide by 1000 (since the integer is at most

“three decimal places long”, division by 1000 guarantees that we always get

a number between 0 and 1).

Step 2: Pile up the Image to 3 dimensions. If W and H are the width

and length of the image, then we set T = W × H and then factor out the

prime factors and list them as p1, p2, p3, ..., pn, 1. An explanation is in order

regarding the presence of the number 1 in the list of primes. This is best

explained by an example: Consider an image of 512 pixels width/height.

Only the number 2 appears in the list of prime factors of 512. If we did

not include the number 1 in the list, any number of permutations on the

list of 2s (there will be 18 of them) would leave the list unchanged for all

practical reasons. But the introduction of the number 1 could cause a new

permuatation to be formed. Back to our original discussion: clearly, W×H =

T = p1 × p2 × px × ....× pn × 1. The list of prime numbers is then permuted

and the permuted list is used to create three groups of prime numbers (three

groups because we want to pile up to three dimensions). In each group, the

product of the prime numbers in that group is taken to get three numbers

L′, W ′, H ′. Clearly, W ×H = T = L′ ×W ′ ×H ′. These are the dimensions

of the cube to which we will “pile-up” the (2D) image.

NOTE: For the permutation process, we will need a seed and a number

to determine the number of rounds to permute. For this, we will use the keys

k5 and k6.

Step 3: Perform the 3D Baker Map. For this, we first need to partition

the side of the cubes so that we get thin sub-cubes on which to work the
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Baker map. To this end, we permute the logistic function using the key k1

as the seed. Each output of the logistic function is converted into an integer.

Further details are not furnished in [5]. The following is our implementation

of this process. We start with a flag variable initialized to zero. As each

integer is output, we compare the difference between the length of the side

we are partitioning and the flag variable. If the integer is less than that

difference, we add it to our list and increment the flag variable by that

amount. If not, we simply discard it. This process goes on till we have got

the required partition. Just to hasten the process, we used the following

optimization: whenever the difference goes less that 10, we terminate the

process and add that difference to our list. This process is repeated with

the another key k2 and another side of the cube. Note that it is enough to

partition just two sides of the cube as this is enough to get sub-cubes (see

fig.4.2).

Step 4: Diffusion. We first set Li = k3 and S = k4. Li is used as the

initial condition/seed for the logistic function which is iterated until we get

a value in the interval (0.2,0.8). We note that the point 0.5 is a ‘trap’. The

function will go on forever outputting 0.5. For this, we perturb the input

to the next iteration. The diffusion is then carried out using the formula in

eqn.3.1

C(k) = φ(k)⊕ {[I(k) + φ(k)] mod N} ⊕ C(k − 1) (3.1)

where we use I(0) = S. For the inverse diffusion (to be used in decryption),

we use the formula in eqn.3.2.

I(k) = {φ(k)⊕ C(k)⊕ C(k − 1) + N − φ(k)} mod N (3.2)

While Moa et al.[5] do not provide a proof of 3.2 being the inverse of 3.1, we

propose the following self-explanatory proof using the properties of the mod
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operator:

C(k) = φ(k)⊕ {[I(k) + φ(k)] mod N} ⊕ C(k − 1)

=⇒ C(k)⊕ φ(k)⊕ C(k − 1) = [I(k) + φ(k)] = I(k) mod N + φ(k)

=⇒ [C(k)⊕ φ(k)⊕ C(k − 1)− φ(k)] = I(k) mod N

=⇒ [C(k)⊕ φ(k)⊕ C(k − 1)− φ(k)± rN ] mod N = I(k)

=⇒ [C(k)⊕ φ(k)⊕ C(k − 1)− φ(k) + N ] mod N = I(k)

(3.3)

Step 5: Transform back to 2D. The image is converted back to 2D from

the 3D cube.

3.3 Performance Metrics

To make infeasible statistical attacks, we need to minimize the amount

of statistical information available to the attacker. One way to measure

this type of information is to plot the histograms of the plain and ciphered

images. The histogram does not yield much information to the attacker if

the histogram is relatively flat over the entire graylevel set. Yet another way

to measure how much statistical information is available is to measure the

correlation between adjacent pixels in the plain and ciphered images.

Further, the concept behind differential attack was introduced earlier. In

order for this type of attack to be made infeasible, we need to ensure that

a small change in input causes a significant change in the output. This is

sometimes referred to as the avalanche effect. For this, two metrics have been

proposed: NPCR or Number of Pixels Change Rate and UACI or Unified

Average Changing Intensity, which are defined as follows.

Given two input images that differ in only one pixel and whose ciphered

images are C1, C2,

NPCR is defined as a binary array D(i, j) as D(i, j) = 1 if C1(i, j) −
C2(i, j) = 0 and D(i, j) = 0 otherwise. In essence, D is a measure of the

percentage of the number of locations that are different in the ciphered im-
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ages. Thus NPCR is defined by:

NPCR =

∑
i,j D(i, j)

W ×H
× 100% (3.4)

Clearly, larger the NPCR, better the encryption procedure.

UACI is defined as

UACI =
1

W ×H

[∑
i,j

C1(i, j)− C2(i, j)

255

]
× 100% (3.5)

Again, larger the UACI value, better the encryption scheme.

3.4 Results and Conclusions

Original Image 3D Baker map Encrypted

Histogram of Original Image Histogram of encrypted image

Figure 3.1: Encryption using 3D Baker maps (key used: 1234567890123456)

Fig.3.1 shows the results of the image encryption process. Notice that

the encryption process flattens the histogram thus making the statistical
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and known-ciphertext attack infeasible. Thus, 3D Baker map based image

encryption is a viable, feasible option for encryption schemes.

The following table indicates that the encryption procedure decorrelates

pixels that are adjacent horizontally, vertically and diagonally.

Plain Image Ciphered-Image

Horizontal 0.0175

Vertical ≈ 1 0.0020

Diagonal -0.3499

Table 3.1: Correlation between adjacent pixels for 3D Baker map based

encryption.

The platform of choice was a PC with an Intel Pentium 4, 2.4 GHz proces-

sor with 1 GB RAM running Microsoft Windows XP Professional with SP2.

We used the OpenCV[27] library for handling images and related functions.

For builds, we used the GNU MinGW 5.1.3 and MSYS 1.0.10.

In the later chapters, we introduce further enhancements through simpli-

fications. For example, we provide an alternate treatment of the Baker maps

and using this treatment, we can extent the Baker map to any arbitrary

dimension.



Chapter 4

Generalized n-Dimensional

Baker Maps

Things should be made as simple as possible, but no simpler.

-Albert Einstein

Bloch: Space is the field of linear operators.

Heisenberg: Nonsense, space is blue and birds fly through it.

-Felix Bloch,

(in Heisenberg and the early days of quantum mechanics).

4.1 Introduction

Fridrich[14] first proposed a general framework for using chaos theory

for image encryption. He generalized an existing chaotic function by the

introduction of some parameters. The paper on Cat map [17] is a very

lucid implementation of this framework. This generalized function is then

used for encryption, with the generalization parameters acting as the ‘key’

of the crypto system. Since then, the 2D and 3D Baker maps have been

extensively used in chaos based image encryption. In this paper, a novel

way of interpreting the discrete Baker map based on the path taken while

traversing the image is presented. This led us to formulate a new path

24
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function S. Using this new perspective, we propose a generic approach for the

construction of n-dimensional Baker maps. To assess the encryption quality,

we employ an additional measure called “the degree of flatness” defined by

MSE of the normalized histogram of encrypted image. Experimental results

indicate that baker maps of dimension greater than 3 do not seem to improve

any of the quality measures and 3D Baker map is therefore sufficient for chaos

based image encryption.

4.2 A Novel Interpretation

We now provide a new interpretation for the formula represented by

eqn.2.11. which can be rewritten as:

(r, s) = Bd(i, j) = (S/M,S mod M) (4.1)

where S = (Mi−1 ×N + j ×mi + i−Mi−1).

Consider the following pseudo code for implementation of this formula,

with N, k defined as above, and the array mi representing mi:

for(i=1;i<k+1;i++)

for(j=mi[i-1];j<mi[i];j++)

for(k=0;k<N;k++)

calculate S;

perform Bd(i,j);

S can now be interpreted as follows. These loops traverse the image one

vertical rectangle at a time. It first traverses the bottom row of the first

column, then the second row from the bottom of the (same) first column and

so on until the first column is exhausted. Next, it moves on to the bottom

most row of the second column and proceeds successively to the rows above

it. Fig.4.1 pictorially depicts the general case. Given i, the first term in

the expression for S, Mi−1×N , gives us the area/number of pixels under the

columns that have been completely traversed so far. The second term, j×mi,
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The 2D traversal path. Interpreting the S formula.

Figure 4.1: Traversal of the 2D image.

gives the area/number of pixels that have been traversed in the column that

is currently being traversed. The last term, i − Mi−1, gives the number of

pixels that have been traversed in the row of the column currently being

traversed. Thus, the quantity S can be thought of as the number of pixels

traversed so far, given the current path of traversal. Note that the formula

is a one-to-one map from (x, y) to [0, (M × N) − 1]. Our interpretation is

consistent with this property: when we move one step in the loop, we have

moved to the next pixel in the image. Thus, we also add 1 to the quantity

S. When the pixel under consideration is the first pixel of a column, only the

first term contributes to S; when the pixel under consideration is the first

pixel of the row (in any given column), the second term alone contributes.

Otherwise most of the time, third term contributes. Note that the usage of

‘first pixel’ is related to the path being taken in the traversal. The ‘effect’

of the Baker maps is to cause ‘kneading’ of the image (and hence the name,

Baker map). In fact, the Baker map is a systematic algorithm to achieve

‘kneading’ of baker’s dough!

At this stage, we wish to point out that the formula in eqn.2.12 provided

by Mao et al. in [5], is not one-to-one and therefore did not lend itself to

decryption. For encryption to be reversible, i.e., to make decryption possible,

we need the Baker map to be one-to-one. Since S is a mapping from (x, y, z)

to [0, (L× W ×H)−1], and the Baker map is written in terms of S, S should
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also be one-to-one function. Hence, taking cue from the new interpretation

of S for the 2D Baker map, we propose this following alternative formula for

S(x, y, z) for the 3D case:

Snew = Hj−1 ×W × L + Wi−1 × hi × L

+wi × hi × z + wi × (y −Hj−1) + x−Wi−1

(4.2)

Schematic of 3D Map

The 3D traversal path. Interpreting S.

Figure 4.2: Traversal of the 3D image.

Fig.4.2 provides a pictorial interpretation of this formula, which is similar

to the 2D case. The following pseudo code implements the formula for the

discrete 3D case with array wi representing wi, the array hj representing hj.

Hj and Wi are as shown in fig.4.2. Here, these loops traverse the 3D cube, one



4.3 Extension to Higher Dimensions 28

sub-cube at a time. First, the first row of the first sub-cube is traversed. Once

a rectangle has been completed, the next rectangle above it is traversed, and

so on until we have completely walked through the entire sub-cube. Then,

the next sub-cube is traversed bottom-up in a similar fashion and so on.

for(i=1;i<k+1;i++)

for(j=1;j<t+1;j++)

for(z=wi[i-1];z<wi[i];z++)

for(y=hj[j];y<hj[i];y++)

for(x=0;x<L;x++)

calculate S;

perform B3d(i,j);

4.2.1 Efficient Implementation

Under this new interpretation, note that in the pseudo code, the calcu-

lation of the path function S merely increments the value of S by 1. Thus,

we can forgo M × N function calls and replace the function call to S by

S++. This holds true for both 2D and 3D versions of the Baker map and in

general, for any dimension as will be evident from the following discussion.

4.3 Extension to Higher Dimensions

From the results of Mao et al.[5] and our own implementation, it is clear

that the 3D Baker map performs better than the 2D map. This motivates

us to extend the Baker map to higher dimensions and investigate its perfor-

mance. We note that if we have a = b mod c, then b = c * k + a, where k

= b/c. Let us consider the following modification of eqn.4.1:

(r, s) = Bd(i, j) = (S mod M,S/M) (4.3)

Notice that the quantity S has been proportioned into two parts using the

modulo and the / operators. Since we are operating S on M , if we ‘read’
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bS/Mc as the integral number of times M can be removed from S (which

is indeed the definition of division), we can interpret the quantity bS/Mc
as the number of rows of size M that can be cut-out from S, or the x-

coordinate of the Baker transformation of S. If we read quantity S mod

M as the number of pixels left over after division by M (which is indeed

the definition of modulo), we can think of this as the number of pixels that

remain after removing bS/Mc rows of pixels of length M . Hence, we can

interpret S mod M as the y-coordinate of the Baker transformation of S. A

similar interpretation also holds true for the 3D Baker map given by eqn.2.7.

We observe that the formula in eqn.4.1 given by Mao et al.[5], is equivalent

to eqn.4.3, except that the encrypted image has its dimensions flipped i.e.,

an M-by-N image is encrypted into an N-by-M image. We now propose the

following formulae for 4D and 5D Baker maps.

B4d = ((((S%vol)%(area))%L),

(((S%vol)%(area))/L),

((S%vol)/(area)),

(S/vol))

(4.4)

B5d = ((((S%hvol)%vol)%(area)%L),

(((S%hvol)%vol)%(area)/L),

(((S%hvol)%vol)/(area)),

((S%hvol)/vol),

(S/hvol))

(4.5)

where % denotes the modulo operator, area is L×W , vol is the volume (L×
W ×H) and hvol is the hyper volume (L×W ×H×F ). The use of notations

like volume and hyper volume is in agreement with the interpretation we

provided at the beginning of this section. In the 2D case, we divided by

lengths alone. In the 3D case, we divide by areas and lengths. In 4D we have

volumes, areas and lengths while 5D also includes hyper volume.
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4.4 Paths Are Many, Goal Is One

What is presented in section 4.2 is but one of the many possible paths that

can be taken while traversing the image. Note that as long as we calculate

the path function S based on the location of the pixel, every pixel will get

mapped to exactly the same location because S uniquely maps every location

and no matter what path is taken for traversing the image, the Baker map

we obtain will be the same. But once we adopt the new, efficient S++

implementation of the path function (see section 4.2.1), we could use many

different paths for traversing the image and get a different Baker map for each

implementation. For example, the path described in section 4.2 traverses

each strip horizontally first and moves upwards. Another obvious way to

traverse the strip will be to traverse the strip vertically and move right as

each column of pixels is completed (see fig. 4.3). Still another way is to

traverse the strip in a spiral. Spiral paths open many more possibilities

of traversal: traverse inside out, outside in, travel left, travel right, start

traversal from top-left, top-right, bottom-left, bottom-right and so on. Thus

we see that imagination alone limits the way we can define a Baker map!

Chapter 6 discusses the ultimate walk based Baker Maps: Random Walk

based Baker Map. Another related idea is the partitioning into strips/cubes.

Figure 4.3: Vertical and Spiral Walks
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In section 4.2, we partitioned the images vertically. Alternatively, we could

partition the image horizontally and pile up the “baked” slices vertically

adjacent to each other. For 3D Baker Maps, the sub-cubes are depicted in

4.2 are vertical. Again, we could have the cubes along the x-axis or along the

y-axis. Each of these again give us different Baker maps - but the concept

behind the Baker map is the same: compress and stretch simultaneously, in

effect simulating the baker’s “kneading” action over many iterations.

Figure 4.4: Alternate way to partition the image - partition horizontally and

pile vertically.

4.5 A New Performance Metric: Mean Square

Error of Normalized Histogram

As mentioned earlier, we wish to flatten the histogram of the ciphered

image in order to thwart or make infeasible statistical and known ciphertext

attacks. To measure the flatness of the histogram, we employ the MSE of

the normalized histogram of the image as the metric. Usually, the MSE is

defined by:

MSE =
1

K

K∑
i=1

(xi − x)2 (4.6)
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where K is the number of bins in the histogram and x is the mean of these K

histogram points. In our case, we want to take the MSE of the histogram of

the image, the MSE taken w.r.t. the ideal mean. Meaning, if our image is a

graylevel image, there are exactly 256 bins in the histogram. So, if the image

size is 512×512, the ideal flat histogram has exactly (512×512)/256 = 1024

pixels distributed into each bucket. Thus, the ideal mean for this image is

1024. Hence we will use x = 1024 while computing the MSE for a 512× 512

image.

To verify that the histogram of the image is indeed uniformly flat in all

parts of the image, we will measure the MSE at varying window sizes. To

start with, we could use a 64×64 window and grow the window size by a fixed

amount till we cover the entire image. For each window size, we calculate

the MSE of the block starting at the top left corner. We next move the

window to the next non-overlapping block of the same size in the horizontal

direction. Once we complete traversing horizontally, we move down and

traverse horizontally again. This traversal is much like running a mask on

an image, except that we choose non-overlapping blocks for calculating the

MSE. But, this presents us with the following new problem: Since the window

size is varying, the mean x will keep increasing with window size. Thus, the

MSE will increase with increasing window size, leading to the misleading

interpretation of loss in flatness of the histogram with increasing window

size!

To overcome this problem we note that we will need to standardize the

histograms across window sizes. The simplest way to standardize a histogram

is to normalize it. Hence, we will normalize the histogram before we take

the MSE. Another crucial point to note here is that once the histogram is

normalized, in the MSE formula we will have to use the normalized mean

which is x = 1.

In our case, we start with a window size of 125 and progressively increased

the window size in steps of 50. At each window size, the MSE values chosen

are the min and max of the MSE calculated over the entire image. For a
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comparative study, we plot the max and min values vs. increasing window

sizes. This helps us to monitor local variations with increasing window size.

We now describe the normalizing factor we will use. To standardize the

histogram, we want to make the number of pixels in each bin appropriately

scaled (up or down as required). We propose to divide the number of pixels in

each bin by the ideal mean; i.e., we choose the normalizing factor to N/256,

where N is the total number of pixels in the current image/window. Consider

the extreme case where all the pixels are in the same bin. Then, for that

bin containing all the pixels, the term x/(N/256) will evaluate to 256 since

x = N . Thus the difference term in the MSE formula for this bin will be

2552 i.e.,(256 − 1)2. For all other bins, it will be (0 − 1)2. Hence the MSE

will be (1/256)(2552 + 255) = (1/256)(255 + 1)255 which is exactly equal to

255, which is one less than the number of bins.

Normalizing the histogram before taking the mean is mathematically

equal to dividing the difference between the sample and the mean by the nor-

malizing factor and then squaring that term (normalized histogrami = xi

N/256
):

MSE =
1

256

256∑
i=1

(
xi

(N/256)
− 1

)2

(4.7)

=
1

256

256∑
i=1

(
xi − (N/256)

(N/256)

)2

=
1

256

256∑
i=1

(
xi − x

(N/256)

)2

4.6 Results

We implemented the 2D, 3D, 4D and 5D Baker maps as given in eqns.

2.10, 2.13, 4.4, 4.5. The encryption algorithm was tested on the 512x512 Lena

image. One round of encryption using 3D Baker map is ‘visually’ better than

one round using the 2D (see fig.4.6). More quantitatively, about 5 rounds

the 2D Baker map are required on an average to even ‘visually’ compete
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with 3D map. The correlation between adjacent pixels is a measure of the

mixing achieved by the map (see fig.4.5 and table 4.1). We consider a random

sample of 1000 pixel locations that are horizontally, vertically and diagonally

adjacent and calculate the correlation between the pixels at those locations

before and after encryption. We observe that the encryption process actually

decorrelates the adjacent pixels. The quantitative results are tabulated in

the table 4.1 for just one round of encryption.

Horizontal Diagonal Vertical

2D 0.0013 0.0190 -0.2650

3D 0.0175 0.0020 -0.3499

4D 0.0138 0.0130 -0.2606

5D 0.0087 0.0076 -0.2440

Table 4.1: Correlation among adjacent pixels for the images ciphered with

various Baker maps.

Horizontal Diagonal Vertical

Figure 4.5: Correlation between adjacent pixels (4D). The plot on the right

side is of the encrypted image while that on the left is of the original image.

4.7 Conclusions and Discussion

We see from fig.4.5, that the encryption process is indeed de-correlating

the adjacent pixels. Further, from the plots of the histograms in fig.4.6, we
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Original 2D 3D 4D 5D

Original 2D 3D 4D 5D

Figure 4.6: Encrypted Images and their histograms.

see that relative to the 3D map, the 4D map has not enhanced the flattening

of the histogram of the encrypted image. To measure the flattening of the

histogram of the encrypted image, we use the MSE deviation of the normal-

ized histogram of the encrypted image from the ideal flat histogram with the

following normalization factor: (L × W )/256 where L × W is the number

of pixels in the image and 256 represents the 256 bins of the gray-level his-

togram. The difference between the MSEs of 3D and 4D histograms is of

10−10 order of magnitude. Fig. 4.7 is a plot of the MSE vs. window size.

The two plots in each graph (fig.4.7) are the upper and lower bounds

of the MSE of normalized histograms for various Baker maps. We see that

while there is a larger difference between the min and max of the MSE for

smaller window sizes while for larger window sizes, the difference between

the min and max is close to zero. i.e., the histogram is “more flat” globally.

In summary, we see that while we can easily extend the Baker map to

higher dimensions, the 3D Baker map is adequate for efficient, fast image

encryption purposes. We wish to point out that as we move to higher dimen-

sions, the number of pixels available to each dimension reduces drastically.

This is because the total number of pixels available remain constant and the

number of pixels distributed to the various higher dimensions differ.

We remark that the applicability of higher dimensional maps might be in
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3D 4D

5D

Figure 4.7: Plot of upper and lower bounds for MSE of normalized his-

tograms.

encrypting larger images. Since larger images imply larger number of pixels

available for each dimension and hence, the higher dimensional Baker maps

would ‘behave’ more chaotically. Thus we note that even though for small

images 3D Baker maps would suffice, for large images, higher dimensional

Baker maps would have an added advantage. However, this is subject to

experimental analysis.



Chapter 5

Embedding Diffusion in

Confusion

Not all diffusions are created equal.

-Thomas F. Denove

5.1 Introduction

Most block-cipher image encryption schemes based on Chaos theory have

independent modules for confusion and diffusion processes. So far no attempt

has been made to integrate these mechanisms to make the encryption pro-

cess efficient. In this paper, we extend 2D images to 3D by using grayscale

image intensities in 8-bit binary form and then applying the 3D Baker map

based confusion algorithm. Thus, the diffusion process is accomplished by

a permutation of binary bits in the third dimension eliminating the need

for a separate diffusion process. The proposed method is also extended to

color images by using the 24-bit color information. Color image encryption

is usually performed by encrypting each channel independently and then

combining to get the encrypted image. We demonstrate that with this sim-

plistic approach, decrypting even a single channel would reasonably reveal

the information contained in the image. In our approach, this drawback is

37
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eliminated by the introduction of dependence on the data contained in all

the channels highlighting the inherent superiority of the proposed algorithm

for color image security.

5.1.1 Brief Recap

Cryptography has certain unique mathematical requirements: diffusion,

confusion and dependence on keys. These properties are readily satisfied by

chaotic functions by their sensitive dependence on initial conditions (func-

tion parameters), topological transitivity and ergodicity (randomness) [8, 6,

7, 5]. This makes chaos theory a good, attractive option for cryptography.

Therefore, chaos theory has been successfully applied to cryptography for

about a decade now. Josef Scharinger[28] introduced chaos theory to encryp-

tion. Thereafter, Fridrich[14] proposed a general framework for using discrete

chaotic maps for image encryption. This framework has been used time and

again for image encryption, for example the works by Mao et al.[5, 17]. In

this framework, the analog chaotic map is first discretized. Next, it is gen-

eralized by the introduction of some parameters. This map is then extended

to three dimensions. The parameters of the map serve the purpose of the

‘key’ for the encryption system. This discrete generalized parametrized map

is used in the encryption algorithm. As an example, refer to section 2.5.3 for

the work on Cat map proposed by Mao et al.[17].

5.2 Motivation

Traditional crypto-systems are often viewed as substitution-permutation

(SP) networks[26], modelled by eqn.5.1 in terms of confusion(C) and diffusion(D)

functions[29].

Y = [D(C(X,K1), K2)]
n (5.1)

where X is the message to be encrypted, K1, K2 are the keys for confusion

and diffusion respectively. In our case, confusion is achieved by the use of
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the Baker Map, which is essentially a permutation map while diffusion is

achieved by substitution. We first examine the process of diffusion in more

detail. Mao at al.[5, 17] use the following function for diffusion:

C(k) = φ(k)⊕ {[I(k) + φ(k)] mod N} ⊕ C(k − 1) (5.2)

The pixel intensity I(k) is replaced by a new pixel value C(k), the ciphered,

or more precisely, the diffused value. In essence, eqn.5.2 simply changes the

intensity value apart from permuting the image. We note that this diffusion

mechanism does not use chaos theory.

5.3 3D Baker Map Based Image Encryption

As is evident from the framework described in sect.5.1.1, the image should

be re-arranged into three dimensions to be able to use the 3D maps for

encryption. We first present results based on traditional methods to ‘pile up

images to higher dimensions’. One of the standard methods to re-arrange the

map is to first find three integers L′, W ′, H ′ such that L′×W ′×H ′ = M×N ,

where M and N are the dimensions of the image. Then, the pixels of the

image are distributed into the three dimensions such that the above equality

is satisfied. Let us call the product M×N as P . The product P is factorized

into its prime factors p1, p2, p3, ..., pn for some n. This list of prime factors is

then divided into three parts which are then multiplied independently to get

L′, W ′ and H ′. The process of dividing into three parts uses the key provided

by the user (see [5]). Fig.5.1 shows the result of encrypting an image using

1234567890123456 as the key.

5.4 Embedding Diffusion in Confusion

In our analysis, we view substitution of intensity values as a permutation

of the bits that make up the intensity value. For example, 145 in binary

is 10010001 and 146 in binary is 10010010, a mere permutation. Thus a
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Original Image 3D Baker map Encrypted

Histogram of Original Image Histogram of encrypted image

Figure 5.1: Encryption using Baker maps with traditional piling algorithms

(key used is 1234567890123456)

substitution of 146 for 145 is a mere permutation of the bits in its binary

representation. This simple observation gives us a novel approach to extend

the image to three dimensions in which we integrate confusion and diffu-

sion at the decimal representation by using only permutations on the binary

representations. We emphasize that this permutation at the binary represen-

tation level is equivalent to integrating confusion and diffusion at the decimal

level. Thus, by integrating confusion and diffusion using only permutations

based on chaotic functions, we attempt to bring the properties of chaoticity

into the diffusion mechanism as well.
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5.5 Novel Extension to Three Dimensions

We propose the following simple treatment of an image: The image is

viewed as a cube that is composed of bits arranged in three dimensional

space. At each pixel location of this cube, the z-axis consists of the bits of

the 8-bit binary representation of the intensities of the pixels at that location.

For example, if the pixel value at location (10,10) of the image is 145, then

its binary equivalent is 10010001. Thus, we consider the image to be a cube

composed of binary strings where the LSB (least-significant-bit) is at the top

of the cube while the MSB (most-significant-bit) is at the base of the cube

(see fig.5.2). We now see that every image is inherently three dimensional in

nature. Fig.5.3 shows the result of using this novel approach to encrypt an

image. We see that reasonable flattening of the histogram is achieved.

Figure 5.2: The cube formed by the binary representation of the pixel inten-

sities provides an alternative view of the image in 3 dimensions.

5.6 Color Image Encryption

A naive approach to color image encryption is to independently encrypt

the three channels (preferably using different keys). We observe that it is

enough to decrypt just one channel of the color image thus encrypted to be

able to see the ‘necessary content’. Fig.5.4 (a) shows that encryption of a
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3D Baker map Encrypted Histogram of Encrypted Image

Figure 5.3: Encryption using Baker maps with binary-string piling algorithm

single channel is not enough - to the human eye, the image is almost indis-

tinguishable from the original. (b) shows that decrypting just one channel

reveals enough information to a human attacker of the system.

(a)Only R channel encrypted (b)Only B channel decrypted

Figure 5.4: Partial decryption using Baker maps with traditional piling al-

gorithm (key used is 1234567890123456)

Alternatively, we could expand the intensity in each channel to 8-bits and

use our new approach to encrypt each channel independently. But, this also

has the same drawback, ie. decryption of just one channel is enough to give

away the necessary visual information (see fig.5.5).

We now use the binary-string approach for color image encryption. We

consider each pixel location to be consisting of a triplet (i1, i2, i3), comprising

of the intensities for each of the three channels. We expand the intensity

values into their binary representation and concatenate the binary strings to
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(a)Only R channel encrypted (b)Only B channel decrypted

Figure 5.5: Partial decryption using binary-string piling algorithm, where

each channel has been expanded to its binary representation and each channel

is independently encrypted

form a 24-bit string at each pixel location. The cube formed by these strings

is then subjected to the Baker map encryption algorithm - sans the piling.

For partial-decryption, we wish to decrypt just one channel. That is, we treat

the 24-bit binary-string based encrypted image as if it were composed of three

channels of 8-bits each and use the 8-bit binary-string based decryption. The

result of subjecting this cube of 24-bit binary strings is given in fig.5.6. We

see that decrypting just one channel does not reveal any visual information.

Encrypted Partially Decrypted

Figure 5.6: Encryption using Baker maps with binary-string piling algorithm

with the binary representations of each channels concatenated.
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5.7 Conclusions and Discussion

In this chapter we propose an alternative treatment of an image which

helps us to achieve simultaneous confusion and diffusion. This integration

allows us to incorporate chaoticity into the diffusion mechanism as well -

a feature lacking in the diffusion formulae proposed in the literature. Our

results show that a reasonable flattening of the histogram is achieved, as

is evident in fig.5.3. However, we wish to point out that this algorithm is

inherently slower than the traditional encryption. In traditional encryption

schemes, the number of permutations is at least equal to the number of pixels

in the image, while in our approach, the number of permutations per round

is at least equal to 8 times the number of pixels (and hence 24 times for 3

channel color images) because the binary representation of the intensity has

8 bits. This process can be speeded up by the use of look-up tables. The

look-up table can be generated once and then reused for multiple rounds of

the map.

Further, in the traditional Baker map based encryption schemes, the pil-

ing up algorithm uses part of the key. In this approach, there is no occasion

to use the key for piling since there is no piling involved! The superior per-

formance of our algorithm is in the case of color image encryption, where we

treat the image as a cube of height 24 (bits), where 8 bits are contributed to

by each channel of the color image.



Chapter 6

Random Walk Formulation of

Baker Maps based on Sparse

Decomposition of Images

Random numbers should not be generated with a method chosen at random.

-Donald E. Knuth

Any one who considers arithmetical methods of producing random numbers

is, of course, in a state of sin.

-John Von Nuemann

6.1 Introduction

We mentioned in section 4.4 that we would discuss random walk based

Baker maps. In this chapter, we explain how we designed the random walk

for the Baker map and show its application in image encryption.

A random walk, as the name suggests, is a walk that is unpredictable.

This unpredictability is what random walks share with chaos theory. But,

we have some unique restriction on the random walk to be able to use it

for the Baker map. We need the Random walk to be a Hamiltonian Cycle.

A hamiltonian cycle is a simple closed path that contains all the vertices

45
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of the graph. We can model an image as a graph with each pixel location

being a vertex of the graph. In our case, we require that every pixel location

be covered. Moreover, any given location should be covered exactly once (in

graph theoretic jargon, this second condition translates to a simple cycle)[30].

6.2 Sparse Decomposition of Images

For generating the random walk, we use the sparse matrix decomposition

first introduced by Hoffman et al.[31]. Hoffman et al. apply different “cri-

teria” to every pixel and then peel them off into sets - the sparse images.

The outline of the process we employ for sparse decomposition of images for

generating a random walk is as follows. The image is first decomposed into

a set of sparse images. Next, each of the sparse images is traversed in some

manner. This gives us a “random” walk that covers every single point of the

image.

Chandrasekaran et al.[32] modified Hoffman’s scheme to allow a pixel to

participate in the selection process more than once. It can be considered

as sparse image decomposition with replacement - a pixel can be present in

more than one sparse image. For this, a time varying quantity called the

freq variable was introduced. In effect, the freq variable creates a family of

control() functions - one control() function for each value of freq. The new

formulation of the system is the following definition:

input() = f(x, y, z) (6.1)

control() = g(input(), freq) (6.2)

output() = h(control(), freq) (6.3)

where z is the intensity value at the location (x, y). A typical example of

an input function is the Euclidean distance:
√

x2 + y2 + z2. This quantity

is used as a parameter for a set of control functions which are essentially like

gating functions. To get the sparse images, we choose one control function at

a time and traverse the entire image using the output function as the criterion
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to determine if the current pixel can belong to the sparse image corresponding

to the current control function. The output function is a threshold function

which determines if the gate (control function) has to open or close. If the

gate opens, then the pixel under consideration is added to the sparse image

corresponding to that control function. This way, a set of sparse images can

be obtained.

However for our purposes, we need to restrict a pixel to exactly one sparse

image (in order that our Baker map remains a one-to-one function). To

achieve this, we modify the approach of Chandrasekaran et al. by introducing

a participation function P(x, y), which is simply a different interpretation of

the freq variable. We multiply the control() function with the participation

function P(x, y) to get controlnew() = P ·g(input()). If we implement P(x, y)

as a binary matrix which has been initialized to 1s, we can set P(x, y) to

zero as soon as a pixel has been output to any sparse image. Thus, in

future calculations of that pixel, we will get zero as output from the control

function which we will consider as a closed gate, thus preventing that pixel

from participating in more than one sparse image.

We can implement the above setup in an efficient manner so as to do away

with the participation function. We will traverse the image just once during

which we will test every pixel location with each of the control functions

until the pixel is allowed into a sparse image after which we do not test that

pixel with any remaining control functions. We simply move on to the next

pixel. Thus, (a) we need not use the participation function as it is implicitly

in force and (b) we traverse the image just once - a definite improvement in

performance!

6.3 Input, Control and Output Functions

We now discuss the input, control and output functions that we have

used in our implementation. Our aim in selecting functions is to use chaotic

functions wherever possible so as to utilize their properties (eg. sensitive
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dependence on initial conditions, mixing and ergodicity) thereby enhancing

the performance of the encryption system.

As the input function, we have used the Euclidean distance function.

However, for our implementation, we do not use the z coordinate in the Eu-

clidean function. If we did use the z coordinate (the pixel intensity values),

the system will not be reversible and hence we cannot implement the de-

cryption process. We will use the following Euclidean function:
√

x2 + y2.

For implementation purposes, we note that if our coordinate system starts at

(0,0), then the Euclidean function evaluates to 0 and hence cannot be used

as an input to the logistic function (which we use as our control function;

see the next paragraph for details) because the logistic function is defined

on (0,1). Thus, we perturb the Euclidean function whenever it is zero. We

point out that this perturbation is a good place to introduce the user’s key.

Hence we make the perturbation a function of the user’s key. Another is-

sue is that the output of the Euclidean function could be larger than 1,

while the logistic function is defined only on the open real interval (0,1).

Hence, we convert the output of the Euclidean function to a real number

using the simplistic approach of dividing it by the root of the sum of the

squares of the dimensions of the image (
√

M2 + N2, for an M × N image).

The rationale: the largest value that the Euclidean distance can take is√
(M − 1)2 + (N − 1)2, 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1. Hence, division by

that quantity guarantees that the resulting value is always less than one. We

will refer to the value output by this modified Euclidean function as eDist

in the following discussion.

For the control function, we utilize the one dimensional logistic map. An

explanation is in order as to why we chose the logistic function. We note that

the logistic function is chaotic. Hence, by the definition provided in section

2.3, we observe that it satisfies the properties of topological transitivity. In

effect, this translates to the following: every point in I has equal probability

of being mapped to every other point. This can be interpreted as uniform

distribution by the logistic function. Thus, the logistic function is a good
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choice so as to get evenly sparse images. That is, the pixels of the original

image are uniformly/evenly distributed across all the sparse images. To start

with, we keep track of the value previously output by the logistic function

(say prev), using part of the key as the initial seed value. Before each call

to the logistic function, we compute the following value: prev = prev ×
eDist which is provided as input to the logistic function. But because of

this multiplication, however, we must assert that prev 6= 0 and prev 6= 1

before we use prev as input to the logistic function the reason being that

on digital computers, the product of positive non-zero reals can become zero

(and ofcourse it can become one) because of the finite precision. For example,

3.95253e−323 × 0.0615273 = 0 on the Intel 32 bit platform. Hence, we must

guard against this so as to prevent erratic logistic function outputs.

We emphasize that it is important to introduce the user key in the above

mentioned cases. If not, the sequence of outputs becomes more predictable,

thereby defeating the efforts of the encryption process. For example, in the

case where the Euclidean distance becomes zero if the perturbation is by a

constant quantity, the output is predictable once that quantity is known. In

practical scenarios, we assume that the attacker has access to the encryption

algorithm (or will eventually have access to it). Thus, it is not unreasonable

to assume that it is a bad idea to use a constant for perturbation.

As the output function, we devise the following function: We divide the

range of the logistic function, namely, I = (0, 1) into a number of equal-

length sub-intervals whose union is I (see fig. 6.1). Each interval has a sparse

image (or bucket) associated with it. The number of intervals we actually

divide I into is a function of the user-key (or it could be a constant, with a

corresponding reduction in security). The output of the logistic function is

tested against the upper and lower bounds of each of these sub-intervals. A

pixel will then belong to a sparse image corresponding to an interval if the

value output by the logistic function falls in the range of that interval. Once

the sparse images/buckets have been constructed, we generate the required

random walk by simply looking at each of the pixels in every bucket in the
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Figure 6.1: The unit interval is split into sub-intervals whose union is the

unit interval itself.

order in which they were put into that bucket. Fig. 6.2 shows the action

of the Baker map in this regard. We observed during our experiments that

larger the number of intervals, better the encryption performance.

Figure 6.2: Random walk assembled by the Baker Map.

Fig. 6.3 shows the 3 sparsely decomposed images using 3 buckets for

decomposition.

Original Image Sparse image 1 Sparse image 2 Sparse image 3

Figure 6.3: Sparse Decomposition of Image (3 buckets are used in this ex-

ample).
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6.4 Results and Conclusions

Fig.6.4 shows the results of the image encryption process. Notice that

the encryption process flattens the histogram thus making the statistical

and known-ciphertext attack difficult.

Original Image Using random-walk based Baker map

Histogram of Original Image Histogram of encrypted image

Figure 6.4: Encryption using random-walk based Baker maps with 10 inter-

vals/buckets in the output function (key used: 1234567890123456)

Table 6.1 and fig. 6.5 indicate that the encryption procedure decorrelates

pixels that are adjacent horizontally, vertically and diagonally.

Plain Image Ciphered-Image

Horizontal 0.0054

Vertical ≈ 1 -0.2410

Diagonal 0.0076

Table 6.1: Correlation between adjacent pixels using random walk based

Baker map.

Hence the encryption process using the random walk based Baker maps

also perform well for image encryption. They have the added advantage that
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Horizontal Diagonal Vertical

Figure 6.5: Correlation between adjacent pixels. The plot on the right side

is of the encrypted image while that on the left is of the original image.

the path taken while traversing the image is based on the user key and hence

the system will be difficult to compromise.



Chapter 7

Discussion and Future Work

...nothing is safe that does not show how it can bear

discussion and publicity.

-Lord Acton

7.1 Conclusion

In this report, we have presented the implementation of the work by Mao

et al. in [5], and verified their claims. We have modified the Baker map

to be treated as a function of S, which we call the path function. With

this modification, we obtained a way of generalizing the Baker Map to any

arbitrary dimension. We used this new extension of the Baker map in image

encryption and show that the 3D Baker map is optimal for image encryption.

We then moved on to propose a novel way to view any 2D image as a 3D

entity. Using this view, we embed the diffusion mechanism into the confusion

process using the 3D Baker map and show its usefulness in application of

image encryption to color images. Lastly, we present a random-walk based

Baker map and use it in image encryption. We point out that the random-

walk based baker maps are harder to decrypt because of the key based random

walk used in this map.

53
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7.2 Future Work

In spite of all this, we note that a lot of work can still be done in this area.

We now summarize some of the directions in which we propose to proceed.

1. Mathematical analysis of the chaoticity of the higher dimensional Baker

maps is yet to be explored. For example, we can calculate the Lyapunov

exponent of the higher dimensional Baker maps and see if there is any

improvement in the chaoticity of the map.

2. We wish to explore the application of fractional chaos in the encryption

scheme. For this, we first need to get the fractional counterparts of the

Baker map and verify that the properties of chaos are retained.

3. We have incorporated the diffusion mechanism into confusion. How-

ever, efforts must be put into exploring the possibility of using chaotic

substitutions for the diffusion mechanism. The main criterion for this

exploration should be the speed and efficiency with which the diffusion

can be achieved using the chaotic maps.

4. In natural sciences, lots of diffusion phenomena are modeled by differ-

ential equations. We wish to explore the applicability of these models

in the diffusion process of encryption schemes. Further, we can uti-

lize fractional calculus to create fractional diffusion equations and in-

vestigate the applicability of these equations for diffusion process for

encryption.

5. We need to investigate the relation between this approach and the Fi-

estel networks[1] of traditional cryptography. We believe that we could

learn some security techniques from the traditional Fiestel networks.

6. Our method of encryption in ideally suited for implementation in em-

bedded systems where memory is at a premium and the processor is

slow. In such cases, we must resort to calculating the permutation each

time. This calls for a trade off between speed of the cipher and strength
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of the cipher. However, for rich platform applications, we could use a

look-up table based implementation of the Baker Map. A look-up ta-

ble based implementation on a rich platform would actually speed up

the performance because look-up tables calculate the permutation just

once and the same permutation can be used over and again for differ-

ent rounds. But this limits the strength of the cipher in the following

way: a fixed permutation implies that we cannot propagate or chain

the cipher through cipher rounds. This could reduce the security of the

cipher. In a non look-up table based implementation, we can use the

chaining process to propagate the chaining across rounds of the cipher

too. Hence there is a trade off between security and performance of the

cipher in the two approaches.

7. We need to verify quantitatively, the randomness or chaoticity of the

paths generated by the sparse decomposition of images method.

8. We could explore alternative ways to generate random/chaotic paths

for Baker maps. But we have presented the germ of the idea which

could be explored further.

9. We have introduced the idea of embedding diffusion mechanism into

confusion and demonstrated it for the 3D maps. We could however,

use it for any dimension. For example, if we wish to use a 5D map,

we could first extend the image to four dimensions using the approach

presented by Mao et al.[5]. For extending to the fifth dimension, we

could use the binary representation of the pixel intensities as described

in section 5.5. Working on this 5D representation of the image is equiv-

alent to embedding diffusion into confusion using the 5D Baker map!

(see section 5.4 for details).

10. We need to integrate all the work done in this thesis and investigate

the performance of the hybrid encryption scheme.
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A chinese proverb goes “I hear and I forget, I see and I remember, I do

and I understand.” It is only in implementing the algorithms that we get

these insights. And as we stated in the beginning of this chapter, and like

any good encryption algorithm, we are open to discussion and scrutiny - for

in public scrutiny lies learning.

“The End of Education is Character”

-Sri Sathya Sai
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