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Abstract— We consider fair allocation of sessions at the outputs
of optical cross-connects employing wavelength division multi-
plexing (WDM). Each session consists of traffic on one or more
wavelengths (channels). We identify lexicographic fairness as the
most appropriate fairness criterion that is relevant to this setting.
Achieving a fair lexicographic solution, commonly referred to as
lexicographic optimality (LEX), is trivial and polynomial-time
computable when any incoming wavelength can be converted to
any outgoing wavelength (full conversion). This is not apparent
in the practical and realistic case of limited conversion. We prove
that LEX is also polynomial-time computable for the limited
conversion case by reducing the problem to a min-cost max-
flow optimization objective in network flows. We also motivate,
formulate and solve a stronger variant of lexicographic optimality
that we refer to as worst-case fair lexicographic optimal (W-LEX).
Although our effective setting is an optimization problem in
bipartite graphs (the request graph is bipartite), the network-
flow based algorithms are applicable to unit capacity graphs in
general. Further, we provide fast polynomial-time algorithms that
furnish solutions for LEX and the W-LEX optimality problems for
arbitrary bipartite graphs (i.e. arbitrary wavelength-conversion
rules) and are computationally less expensive than network-flow
methods. Finally we report simulation results to validate our
findings.

I. INTRODUCTION

Wavelength-Division Multiplexing (WDM) technology ex-
ploits high optical fiber bandwidth( 50Tb/sec compared to
few Gb/sec’s in electronics) by multiplexing different chan-
nels from end-users onto non-overlapping wavelengths. A
wavelength-routed all-optical WDM network consists of wave-
length routers called optical cross-connects (OXC) that are
connected with one another by high speed optical fiber links.
In such networks users communicate via all-optical channels
called light-paths. A good introduction to the area of optical
networks and relevant issues can be found in [1], [2], [3].
An OXC serves to switch or guide light-paths. An incoming
wavelength (channel) on a fiber may be translated to the same
or different wavelength in the outgoing fiber. The OXC em-
ploys wavelength conversion when the incoming and outgoing
wavelengths of the light-path are different. Conversion aids in
maximizing the network throughput [4], [5]; however, current
all-optical converters can convert an incoming wavelength to
only a few outgoing wavelengths and are usually referred to as
Limited range wavelength converters (LRWCs) ([6] contains
a chapter on conversion).
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Usually, an individual channel is associated with an Internet
Service Provider (ISP). Demand for bandwidth continues to
grow and exciting developments in ultra-dense WDM technol-
ogy point to a significant increase in the number of channels
that can be supported in the fiber; hence, it is common to see
ISPs subscribing more channels to satisfy their customers. A
session can be thought of a set of channels that are owned
by the same ISP. These channels together carry the aggregate
traffic of that session. Commercial products like the Cisco
ONS 15530, Intel IXF19302, Alcatel 1850 TSS and Ciena
ONLINE MetroTM Multiservice DWDM transport platform
etc. already offer this “service aggregation” feature.

Several such sessions may compete for channels at the
output ports of OXCs. Previous research[7], [8] on Quality
of Service (QoS) in OXCs identify the problem as one of
maximizing the throughput. Each channel is associated with a
weight and the objective is to choose non-conflicting requests
such that the overall weight is maximized. This is a maximum
weighted bipartite matching problem. Similarly, [9] solves
the problem of maximizing throughput and minimizing delay
in buffered OXCs by an efficient algorithm referred to as
Scan and Swap Algorithm. The work in [10] considers OXCs
employing LRWCs that are shared per node or per output-
fiber. Analysis and simulation studies are done for the loss
probability. In all these previous works there is the implicit as-
sumption that a channel is synonymous with a session. On the
other hand simultaneously ensuring fairness among sessions
and achieving high throughput become more meaningful in
this context; rather than, merely maximizing the throughput.

Existing research is inadequate since the algorithms are not
session-aware. Intuitively, the carrier ISP (the ISP that has
deployed the OXC) would like to (i) serve as many sessions
as possible (ii) maximize the minimum allocations of channels
to every session and distribute the excess fairly across the
sessions and (iii) make sure that the throughput is not affected
adversely (to maximize its efficiency and revenue). The first
objective is exactly the fairness problem of lexicographic
optimality on a discrete feasible set. We also show that, for the
problem domain under consideration, lexicographic optimality
necessarily leads to maximum throughput! We therefore aim
at lexicographic optimality in this work.

Our only assumptions are all channels are of same weight
and each session is only directed at a single output. To summa-
rize, our work deals with lexicographic optimality (LEX) and a
preferred variant, the worst-case fair lexicographic optimality
(W-LEX), when sessions share output fibers of the OXCs. We



identify some key properties (inherent in the problem struc-
ture) that enable us to provide fast polynomial-time algorithms
for determining optimal solutions in the presence of LRWCs
with systematic or arbitrary wavelength conversion rules.
Our Contributions We prove that LEX and W-LEX problems
for channel-aggregated sessions in OXCs can be computed in
polynomial time by reduction from the min-cost flow problem.
To the best of our knowledge, our results establish, for the first
time, that the discrete-lexicographic allocation problem for
unit capacity networks can be solved in polynomial time, even
though the problem in general is known to be NP-hard[11]. We
also provide simpler and faster algorithms than min-cost flow
based approaches that solve the LEX and W-LEX problems in
bipartite networks. Finally we illustrate simulation results to
validate our proposed algorithms.

II. BACKGROUND, NOTATION AND PRELIMINARIES

Different notions of fairness exist in the literature such as
proportional fairness [12], max-min fairness [13] and weighted
max-min fairness, utility fairness [14], [15] and several others.
Max-min fairness (based on the premise of maximizing the
minimum allocations) simply states that increasing the alloca-
tion of any entity should not be at the expense of another that
received a lesser allocation in the first place . Max-min fairness
has conventionally been applied to many networking problems
in routing, load balancing, wired and wireless electronic switch
scheduling. In these problems it is used to allocate rate or
bandwidth to competing entities, the resource in question (i.e.
the rate or the bandwidth) is assumed to be a continuously
divisible. The max-min fairness is based on the theory of
bottlenecks although the existing theory can be generalized
to apply indirectly to seemingly different scenarios [16].

Max-min fairness was recently introduced in the electronic
switch context by Yim et. al. [17] and Hosaagrahara et.
al. [18]. However, in the optical domain, this allocation has
to be in discrete amounts, for instance, whether a channel is
allocated to a session or not. Thus the problem reduces to one
of discrete allocation. To the best of our knowledge there have
only been a few attempts to quantify this discrete max-min
problem. Sarkar and Tassiulas [11] used the discrete max-min
problem to solve the multi-rate multicast problem. Indepen-
dently Ros and Tsai [19] formulated the condition to solve
the wavelength assignment problem for optical sub-networks.
Although the max-min solution to bandwidth allocation in the
discrete case may not exist, two other forms, lexicographic and
(a weaker form) maximal fairness do exist. In particular, we
discuss lexicographic allocation in this paper. A recent work
[20] describes the lexicographic optimization in the context of
telecommunication networks but does not consider a discrete
set.

A. Formal discussion of various Fairness schemes

We now state formal definitions of relevant fairness notions
(borrowed from [11]) in the literature. Under some allocation
policy A, an allocation vector

−→A is defined as the n-tuple
(|A1|, |A2|, . . . , |An|) i.e.

−→A = (|A1|, |A2|, . . . , |An|) where

the ith entry represents the allocation to entity i. The number
of entries in

−→A will be denoted by |−→A|.
Definition 2.1: (Maxmin Fairness) A feasible discrete al-

location vector
−→A is maxmim fair if it satisfies the following

property with respect to any other feasible discrete allocation
vector

−→B : if there exists i s.t. |Bi| > |Ai| then there exists j
s.t. |Aj | ≤ |Ai| and |Bj | ≤ |Aj |

Definition 2.2: (Lexicographic Comparision) Given a dis-
crete n-allocation vector

−→
V , define its lexicographically or-

dered version V̂ as follows: ∀j∈1, . . . n, ∃k s.t. |Vj | = V̂k and
V̂1 ≤ V̂2 ≤ . . . V̂n. Thus V̂ is a permutation of

−→
V in ascending

order. A discrete allocation vector
−→A is lexicographically

greater than another allocation vector
−→B if |−→A| > |−→B | or

there exist i s.t. Âi > B̂i and Âj = B̂j if j < i.
Definition 2.3: (Lexicographic Optimality) A feasible dis-

crete allocation is lexicographically optimal, iff it is lexi-
cographically greater than or equal to every other feasible
allocation.
We illustrate the two fairness criteria with an example.
Example: Sessions from two input ports compete at the same
output port of an OXC. f1 and f2 are two sessions at the
first input port. f1 consists of a single channel on wavelength
λ1 and f2 consists of three channels λ2, λ3, λ4. Similarly,
f3 and f4 are two sessions at the second input port. f3

consists of a single channel on wavelength λ1 and f4 consists
of four channels on λ2, λ3, λ4, λ5 respectively. Suppose the
output only provides 6 wavelengths λ1, . . . λ6 and assume, for
simplicity, that all wavelengths are fully convertible to one
another.

Consider two different allocations at the output Ai and Aj

with allocation vectors
−→Ai = (|Ai

f1
|, |Ai

f2
|, |Ai

f3
|, |Ai

f4
|) =

(1, 2, 1, 2) and
−→Aj = (|Aj

f1
|, |Aj

f2
|, |Aj

f3
|, |Aj

f4
| = (1, 1, 1, 3).

Then Ai is both a maxmin fair and lexicographically optimal
allocation. On the other hand, if the output provides for 7
wavelengths a maxmin fair allocation does not exist. Instead
the allocations that result in allocation vectors (1, 2, 1, 3) or
(1, 3, 1, 2) can be considered to be lexicographically optimal.

When lexicographic optimality exists but its computation is
NP-hard, a weaker notion of fairness, called maximal fairness
is sought (fair allocation of discrete bandwidth layers in
multicasting [11]). We do not consider this here.

B. OXC Model

The OXC consists of Ns input fibers and Ms output fibers.
Each fiber can support Λ unique wavelengths (denoted by
λj | j = 1 . . . Λ) simultaneously using WDM (assumption of
same number of wavelengths in each fiber is not necessary). A
channel is distinguished by the 3-tuple (i, j, q) and denotes the
incoming request on wavelength λj at port i directed at output
port q. The ith session, fi, is some collection of channels
directed at the same output i.e. fi = {(j, k, q)} ∃j, k, q ∈ I ,
and let Fq be the set of all sessions directed at output q. Let
|fi| and |Fq| have their usual meanings i.e. the number of
elements in these sets. We do not limit that a session consist
of connection requests from the same input fiber only.



In the rest of the paper, whenever we refer to input channels
or sessions it is always in relation to the outgoing fiber that
they are directed at ( therefore, for instance, we can dispense
with the subscript q in Fq). Time is slotted and scheduling of
requests takes place synchronously at these slotted time points.
Mathematically, wavelength conversion is a correspondence
where an incoming channel (λj) can be mapped to a subset
of the outgoing wavelengths (λjl, l = 1 . . . K), where K
(conversion degree) is the maximum number of wavelengths
into which λj can be converted (including itself) by the
LRWC. Common LRWCs include ordered interval wavelength
converters or circular symmetrical wavelength converters in
which wavelength conversion obeys certain well-defined rules.
LRWCs are present at the inputs. The switch model is shown
in Figure 1 along with these commonly used wavelength
conversions.
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Fig. 1. DWDM Switch Schematic and common wavelength-conversion rules

III. FAIR-SHARE ALGORITHMS BASED ON MAXIMUM

MATCHING OF REQUEST GRAPHS

The correspondence between incoming and outgoing wave-
lengths (due to presence of LRWCs) can be represented as a
bipartite request graph (A,B,E); A = (a1, a2, . . . , aN ), N is
the number of input channels; B = (b1, b2, . . . , bm), m≤Λ;
(aibj) ∈ E if incoming wavelength, represented by ai, can
be converted to bj representing an outgoing wavelength. fa

denote the session of the channel represented by vertex a∈A,
Rfi

denote the number of “requests” (number of channels) of
session fi (i.e Rfi

= |fi|). Afi
⊆ A denote the set of vertices

(channels) of A that belong to session fi. Vertex ai and bj

are said to be matched (under some allocation policy) if the
wavelength represented by ai is converted to the wavelength
represented by bj . In this case edge (aibj) is also said to be
matched and ai is said to be allocated. Aj

fi
denotes the set of

allocated vertices of session fi under allocation policy Aj and
|Afi

| the number of these vertices. A path p from vertex x to
v in (A,B,E) is some collection of edges in E via which v
is reachable from x.

LEX is trivial in the case of full conversion. Arrange all ses-
sions in descending order of the number of channels. Initially
all input and outgoing channels are unmatched. Algorithm 1
solves LEX.

A. Lexicographic Optimality under partial conversion

Solutions for LEX and W-LEX optimization problems are
non-obvious when LRWCs are present and conversion rules
are arbitrary.

Algorithm 1 Solving LEX under full conversion
repeat

Match one unmatched input channel of each session to an
unmatched output channel in round-robin order

until no unmatched channel at either inputs or output

Fact 3.1: An lexicographic optimal fair solution always
exists.

Proof: For a given session set, the request graph is
unique, and hence the total number of different ways in which
channels can be assigned is fixed. The lexicographic fairness
property always ensures that any two assignment instances
compare affirmatively, either one is more fair than the other,
or both are equally fair lexicographically. This implies a total
order of assignments with respect to lexicographic optimality.
Therefore there exists an assignment (not necessarily unique)
that is lexicographic optimal.
We now state an important property that applies to any
lexicographic optimal assignment.

Lemma 3.2: A Lexicographic optimal Assignment is a
maximum matching but not vice-versa.

Proof: We only prove the forward implication since the
converse is trivial. We will prove this by contradiction. Sup-
pose that Ψx = (U ,V, E) is a lexicographic optimal solution
(U ⊆ A,V ⊆ B, E ⊆ E, (A,B,E) is the request graph)
but not a maximum matching instance. Then there exists an
augmenting path p (alternating path of unmatched and matched
edges, starting from an unmatched vertex in A and ending on
an unmatched vertex in B). Let π be a permutation of vertices
in U ∪ V. s.t. p = (uπ(1)uπ(2) . . . uπ(|p|−1), uπ(|p|)), where
uπ(j) is the jth vertex on path p.

When we invert the matchings (i.e. by making the matched
edges of s unmatched and the unmatched edges matched, a
process called augmentation), all internal vertices of p ∈ U
uπ(3), uπ(5) · · ·uπ(|p|−1) that were matched before still remain
matched (although to different vertices). Allocation of none
of the sessions reduced due to the augmentation; however,
additionally; uπ(1) that was previously unmatched becomes
matched. This means that allocation of one session has in-
creased by one while the rest of the sessions are unaffected.
Thus the new allocation, call this Ψ′, is lexicographically
more fair than Ψx violating the assumption of lexicographic
optimality of Ψx; a contradiction.
In the next section, we show that the desired lexicographic
fairness objective can be cast as an optimization problem in
flow networks[21].

IV. NETWORK FLOW APPROACH

Given a graph G = (V,E) with nodes V and edges E,
and special nodes source s and sink t, let fluv be the flow
from node u to node v along edge eu,v , and κuv the capacity
(maximum flow possible) of euv . A network flow is a real
function fl : V × V → R with the following three properties
for all nodes u and v:

1) Skew symmetry: fluv = −flvu. The net flow from u to
v must be the opposite of the net flow from v to u.



2) Capacity constraints: fluv ≤ κuv. The flow along an
edge cannot exceed its capacity.

3) Flow conservation:
∑

w∈V,w �=s,t fluw = 0 The net flow
to a node is zero, except for the source, which “pro-
duces” flow, and the sink, which “consumes” flow.

Notice that fluv is the net flow from u to v. If the graph
represents a physical network, and if there is a real flow of,
for example, 4 units from u to v, and a real flow of 3 units
from v to u, we have fluv = 1 and flvu = −1. A flow that
satisfies the above three properties is also called a “legal” flow.
The maximum flow problem is finding a legal flow through a
flow network of maximum value.

In a min-cost max-flow problem, each edge euv has a given
unit cost cuv . (A cost is a bijection Υ(e)e∈E → {R+∪0}), and
the cost of sending the flow fluv across the edge is fluv · cuv .
The objective is to send a given amount of flow from the
source to the sink, at the lowest possible cost.
We define the min cost max flow objective formally. Associate
with each vertex k ∈ V a number b(k) = Σiflki − Σjfljk.
b(k) denotes the demand or supply of vertex k depending on
whether it is negative or positive. Let the maximum flow on
this network be fmax. The minimum cost flow problem can
now be stated.

Minimize z(x) =
∑

eij∈E

cijflij (1)

subject to

b(i) =
∑

{j:eij∈E}
flij −

∑

{j:eji∈E}
flji

b(i) = 0, ∀i∈V −{s, t}
b(s) = −b(t) = fmax

0 ≤ flij ≤ κij , for all eij ∈E

A. Reduction of min cost flow problem to Lexicographic
Optimality

We add additional vertices and edges to the request graph
and assign costs and capacities to all the edges of the resulting
graph in an appropriate way (described shortly) and transform
it to a flow network. We prove that a min-cost flow solution
on this transformed graph also solves LEX. The construction
follows.
Construction: Initially we add two vertices, a source vertex
s and a sink vertex t to the request graph (A,B,E). For
each session, fi, in the system, we create a vertex vi. For
all aj ∈ A s.t. faj = fi, we connect vi to aj by unit capacity
zero cost directed edge (cviaj

= 0, κviaj
= 1). Similarly, we

connect each vertex bj ∈ B to the sink t by such a directed
edge (cbjt = 0, κbjt = 1). We also connect s to each vi

by a zero cost directed edge of capacity N . In addition, we
consider a set E of N directed unit capacity edges with edge
costs 1, N, . . . NN−1. We further add to the graph the set E ,
connected between each vi and t i.e. |F| such E ′s are inserted.
Note that the resulting graph is now a flow-network. Denote
this new flow-network by G = (Ng, Eg) that has edge costs
Cij (as just described, C : Eg → {R+ ∪ 0}) and capacity

1 associated with every edge eij ∈ Eg except the edges
esvi

which have capacity N . Call the bipartite sub-network
of (Ng, Eg) (that was the original bipartite graph (A,B,E))
(N ′

g, E
′
g, ). Figure 2 illustrates the construction (each edge is

labeled with its “capacity, cost”).
Now we push a flow equal to |F|N from the source s (recall

that each edge esvi
has been assigned a flow that equals N ).

We explain the intuition behind assigning such capacities and
costs. Each unit capacity edge eviaj

represents an incoming
channel of fi in the request graph and ebjt represents a
potential outgoing channel. The flow through the bipartite sub-
network (N ′

g, E
′
g) cannot exceed the cardinality (|M|) of a

maximum matching in (A,B,E) (M is one such maximum
matching). So the rest of the flow, of size |F|N − |M|, has
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Fig. 2. Construction for proving Lexicographic Optimality

to flow through the E edges. We can think of flow through
(N ′

g, E
′
g) as the allocations. The cost structure on E has been

defined in such a way that the cost due to an additional rejected
flow of a session is more than the total cost incurred due to all
the previous rejected flows of that session (i.e. cost incurred
on account of the kth rejected flow (same for all sessions) is
more than the total cost due to the previous k − 1 rejected
flows). The idea is to decide which flows to reject and direct
through the set of |F| Es (equivalently which flows to send
through (N ′

g, E
′
g)) so that the cost is minimum. Intuitively,

simultaneously maximizing the number of flows from each
session (i.e. lexicographic allocation) through (N ′

g, E
′
g) leads

to minimum cost. We prove this formally.
Theorem 4.1: The solution to the min-cost flow problem

with flow-size equal to |F|N in the flow-network G =
(Ng, Eg) (Figure 2) in equation 1 solves LEX.

Proof: Let Al be a lexicographic allocation and πl =
(rπl(1), rπl(2), . . . , rπl(|F|)) be the lexicographic allocation
vector, where rπl(i) is the number of channels of the session
with the ith lowest allocation i.e πl denotes the n-tuple
allocation vector in ascending order of allocation. Aj is
another allocation with corresponding allocation vector πj =
(rπj(1), rπj(2), . . . , rπj(|F|)) (also in ascending order). If Al

is fairer than Aj then there exists some k, where rπl(k) >
rπj(k) ∧ ∀ i<k, (if i exists ) rπl(i) = rπj(i). Let rπl(k) = m.
Let C(A) denote the total cost under allocation A. In the flow
network (Ng, Eg), the total cost incurred by sessions whose



allocation is less than m is the same for both the allocations,
call this Cp. Then cost under Al is at most

C(Al) ≤ |F|ΣN−m−1
i=0 N i + Cp

and cost under Aj is at least

C(Aj) ≥ ΣN−m
i=0 N i + Cp

C(Aj) − C(Al) = ΣN−m
i=0 N i − |F|ΣN−m−1

i=0 N i

Since |F| is at most N , we have

C(Aj) − C(Al) ≥ ΣN−m
i=0 N i − NΣN−m−1

i=0 N i

Hence C(Aj) − C(Al) ≥ (1 + N + N2 . . . NN−m) − (N +
N2 + . . . NN−m) = 1. Thus C(Al) < C(Aj). This concludes
the proof.

Note that the lexicographic optimal allocation need not be
unique. A natural preference would be for a LEX solution in
which sessions with higher demands receive higher allocations
as far as feasible. Mathematically we formulate this objective
as seeking a LEX solution (Ali) in which the maximum
discrepancy between some session’s demand and the allocation
that it receives as per that solution is still the minimum among
all other alternative LEX solutions (Alk ). Thus,

Determine Ali (2)

subject to

supj(Rj − |Ali
j |) ≤ infk{supj(Rj − |Alk

j |)}
We refer to the above problem formulation as the W-LEX
(worst case fair Lexicographic optimal) optimization problem.
We illustrate that with an appropriate construction on the
request graph and careful assignment of costs and capacities
to edges, one can reduce the given problem to an equivalent
problem of finding the min-cost flow solution in flow net-
works.
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Fig. 3. Construction for proving Worst case fair Lexicographic Optimality

Construction: We perform the same construction as before
(Figure 2). However the N edges of the set E are assigned
costs according to following policy

Cek
= Nk−1, k ≤ N − Ri

Cek
= Nk−1 +

1
NN−(k−(N−Ri))+2

, N − Ri < k ≤ N

We refer to the fractional part of the cost (the
1

NN−(k−(N−Ri))+2 ’s) as auxiliary costs. The construction with
the new costs is shown in Figure 3.

Theorem 4.2: The solution to the min-cost flow problem
with flow-size equal to |F|N | in the flow-network G =
(Ng, Eg) (Figure 3) in equation 1 also solves W-LEX.

Proof: First we provide some intuition regarding the new
cost structure. Our goal is to not only achieve lexicographic
optimality but also ensure an assignment in which the dis-
crepancy between the request and allocation for any session
is the minimum amongst other lexicographic allocations. The
auxilliary costs have been chosen in a manner such that any
allocation that solves LEX and has a maximum discrepancy
of at least d + 1 results in a higher total auxilliary cost than
another allocation that also solves LEX and has maximum
discrepancy equal to d. Let ∆ be the sum of all possible
auxilliary costs, under some allocation policy. Then

∆ = Σfi
ΣRi

k=1

1
NN−k+2

≤ |F|ΣN
k=1

1
NN−k+2

≤ NΣN
k=1

1
NN−k+2

< N
1

N2
(Σ∞

k=0

1
Nk

)

<
1
N

(
1

1 − 1
N

)

< 1

Since the allocation policy was quite general, it follows that
the sum-total of all auxilliary costs is at most one irrespective
of the allocation policy. First we prove that min-cost flow
solution also solves LEX. As before, let Al be an allocation
that solves LEX and πl = (rπl(1), rπl(2), . . . , rπl(|F|)) be
the allocation vector (ascending order) and let Aj be some
other allocation with corresponding allocation vector πj =
(rπj(1), rπj(2), . . . , rπj(|F|)). Let ∆l and ∆j be the auxilliary
costs under Al and Aj respectively. As in the proof of Lemma
4.1, If Al solves LEX and Aj does not, then there exists some
k, where rπl(k) > rπj(k) ∧ ∀ i < k, (if i exists ) rπl(i) =
rπj(i). Let rπl(k) = m. In the flow network of (Ng, Eg)
(Figure 3), the total cost (excluding the auxilliary costs)
incurred by sessions whose allocation is less than m is the
same for both the allocations, call this Cp. Then, the cost under
Al is at most

C(Al) ≤ |F|ΣN−m−1
i=0 N i + Cp + ∆l

and cost under Aj is at least

C(Aj) ≥ ΣN−m
i=0 N i + Cp + ∆j

C(Aj) − C(Al) = ΣN−m
i=0 N i − |F|ΣN−m−1

i=0 N i + ∆j − ∆l

Since |F| is at most N , we have

C(Aj) − C(Al) ≥ ΣN−m
i=0 N i − NΣN−m−1

i=0 N i + ∆j − ∆l



Hence C(Aj) − C(Al) ≥ (1 + N + N2 . . . NN−m) − (N +
N2 + . . . NN−m)+∆j −∆l = 1+∆j −∆l. Since 0 ≤ ∆j <
1, 0 ≤ ∆l < 1, C(Aj) > C(Al). Hence we prove that any
solution to the min-cost flow problem of Figure 3 has to be a
lexicographic optimal solution (i.e. solves LEX).

We now prove that the min-cost flow solution not only
solves LEX but also W-LEX. Accordingly, let As be a solution
for W-LEX and Al be another allocation that solves LEX but
not W-LEX. Let fi be the session with the maximum dis-
crepancy between its demand and allocation under allocation
policy As, let this discrepancy be denoted as di. Similarly let
fj be the corresponding session under allocation policy Al,
and the resulting discrepancy dj i.e.

di = supfk,k=1...|F|(Rfk
− |Afk

|) |A=As

dj = supfk,k=1...|F|(Rfk
− |Afk

|) |A=Al

Therefore dj ≥ di + 1. It is evident that the total cost
excluding the auxilliary costs incurred in the flow network
due to allocation policies As and Al is the same (since both
are assumed to be lexicographic optimal). Let us now estimate
the auxilliary costs.

∆s ≤ |F|Σdi

k=1

1
NN−k+2

≤ NΣdi

k=1

1
NN−k+2

≤ Σdi+1
k=1

1
NN−k+2

− 1
NN+1

≤ ∆l − 1
NN+1

(since dj ≥ di + 1)

< ∆l

Hence As incurs less cost than Al in the flow network.
Since the discrepancy under As was least compared to other
alternative allocations that solved LEX, we see than the min-
cost flow solution actually furnishes a solution to W-LEX (In
fact, if all W-LEX solutions are arranged according to discrep-
ancies of sessions in descending order, then the min-cost flow
solution identifies the one with the lowest discrepancy where
the discrepancies first differ). This concludes the proof.

The min-cost flow problem can be most efficiently solved
by the cost-rescaling approaches as discussed by Goldberg
Tarjan [22], Ahuja et. al. [23] and Orlin [24]. The re-
spective time complexities are O(nm log(n2/m) log(nC)),
O(nm(log log U) log(nC)) and O((m log n)(m + n log n)),
where C is the largest cost coefficient, U is the largest of
the edge capacities, m is the number of edges and n the
number of vertices. Note that the min-cost flow reduction
technique can work for any unit capacity network and not
necessarily a bipartite graph (the reduction technique used was
oblivious to the bipartite nature of (Ag, Bg)). Note also that
the benefits of cost scaling notwithstanding, the problem may
be computationally expensive owing to the potentially large
calculation for C.

In the next section we present fast algorithms that obviate
the flow-based approach and instead exploit the bipartite

structure of the request graph to solve the LEX and W-LEX
problems.

V. FASTER ALGORITHM FOR BIPARTITE GRAPHS

A. Lexicographic Optimal Solution: The general case (LEX)

The concept of an improving augmenting path is key to
determining a faster algorithm for the bipartite case.

Definition 5.1: We define an improving augmenting path
p = (vs, vi, . . . , vt), vs, vt ∈ A, as a path in (A,B,E) that
starts from some unmatched vertex vs, consists of alternating
unmatched and matched edges and ends in a matched vertex
vt such that |Afvt | − |Afvs | ≥ 2.
fv is said to be an augmentable session if v is the source
of an improving augmenting path. We know that a LEX
solution is a maximum matching (Lemma 3.2). Therefore,
we perform a maximum matching first. Then, we determine
an augmentable session and augment along the corresponding
improving augmenting path. We repeat this process until no
augmentable sessions remain. An illustration of this procedure
is provided through the Example below.
Example: Figure 4(a) shows a request graph with three
sessions F1, F2, F3. The wavelengths are allocated to channels
according to the matching shown by bold lines. The initial
allocations are |AF1 | = 2, |AF2 | = 3 and |AF3 | = 4. Even
though this is a maximum matching, this is not a lexicographic
optimal assignment. Note that there exists an improving aug-
menting path A3B3A4B4A5B5A6B6A7 as shown in bold in
Figure 4(b). Augmenting along that path results in Figure 4(c);
the new allocations are |AF1 | = 3, |AF2 | = 3 and |AF3 | = 3,
resulting in a lexicographic optimal assignment.
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Fig. 4. Improving augmenting path

How many iterations are sufficient? In the simple example
above only one iteration was sufficient to achieve lexico-
graphic optimality. However, in general, several iterations (an
O(N2) algorithm is used in the simulations) may be needed
to find an unmatched vertex that is the source of an improving
augmenting path. We would like an algorithm that solves LEX
using as few iterations as possible. Such an algorithm is indeed
possible. Before stating the algorithm itself, we reveal another
interesting property inherent in the problem structure..

Lemma 5.2: Let fi and fj be a non-augmentable and aug-
mentable sessions respectively s.t. |Afi

| < |Afj
|. Augmenting



fj has no effect on further allocation to fi (|Afi
| remains

invariant for all succeeding augmentations of other sessions).
Proof: Assume to the contrary that augmenting fj

along an improving augmenting path p results in making fi

augmentable. This implies that p shares at least one matched
edge e with an alternating path p′ that starts from some
unmatched vertex of fi and ends at e. Let p\e be the extension
of p after e till its end-point vt (i.e. vt s.t. |Afvt | > |Afj

|+1).
Then p′ ⊕ p\e, i.e. p′ concatenated with p\e is also an
improving augmenting path for fi contradicting that fi is non-
augmentable.
Lemma 5.2 leads to the following corollary.

Corollary 5.3: At any iteration, if we always check for an
improving augmenting path from an unmatched vertex of a
session with the current lowest allocation, then this vertex need
not be considered in future iterations.

Lemma 3.2, Definition 5.1, Lemmma 5.2 and Corollary 5.3
provide the genesis of an algorithm to solve LEX. Initially
perform a maximum matching, arrange the unmatched vertices
of each session into a linked list and the sessions in the form
of a heap (top of the heap contains index of the session with
the current lowest allocation). We search for an improving
augmenting path, call it p, from the vertex extracted from
the head of the session’s linked list. If such a p exists we add
its end-point, vt, to the linked list of unmatched vertices of
fvt and update the allocations. If no such p exists we extract
the next vertex and perform a new search. Once extracted,
vertices are never inserted again into their respective lists. If
the linked list of a session becomes empty, this session is
non-augmentable and therefore not to be considered further;
otherwise the session is potentially augmentable and put into
the heap. This process is repeated until all sessions are non-
augmentable. The algorithm starts with the assumption that
all sessions are potentially augmentable. The algorithm is
formally defined in Algorithm 2. The actual description of
the augmentation procedure is summarized in the Augment()
subroutine (depth first search based), described formally as
Algorithm 3.

B. Lexicographic Optimal Solution: The worst case fair case
(W-LEX)

Similar to the previous section, we introduce the concept of
a W-Improving Augmenting path.

Definition 5.4: We define an W-improving augmenting path
p = (vs, vi, . . . , vt), vs, vt ∈ A as a path in (A,B,E) that
starts from an unmatched vs, consists of alternating unmatched
and matched edges and ends in a matched vertex vt such that
|Afvt | − |Afvs | ≥ 1 ∧ Rfvs > Rfvt .
If we replace the “if” condition in the statement of line 9
Algorithm 3 by the following condition

if |AfmatchR[v] |−|Afvs |≥1 ∧ Rfvs >RfmatchR[v] then

and start with a maximum matching and then apply Algo-
rithm 2 we would get a lexicographic solution that is worst-
case fair (In each iteration we consider sessions with lowest
allocations and highest discrepancy). Figure 5(a) illustrates

Algorithm 2 Algorithm to solve LEX

Require: Bipartite graph (A, B, E), Session Set {fj}
Ensure: Lexicographic Optimal matching

1: Afi = 0 : Set Allocations to 0, i = 1, · · · , |F|
2: M : Maximum Matching s.t. (AM, BM, EM) is request graph
3: matchL[u] = v, matchR[v] = u ∀(uv) ∈ EM
4: matchL[u] = matchR[v] = −1 ∀ unmatched u, v
5: H : Heap of sessions as per updated allocations from matching
6: P fi

l : Linked list of unmatched vertices of fi, i = 1, · · · , |F|
7: while H �= φ do
8: i← Extractmin([H])
9: v ← Extract(P fi

l ) /* Splice out v from fi’s list */
10: if Augment(v, v)==true then
11: |Afv | = |Afv |+ 1
12: vt → Addto(P fvt

l )
13: else
14: if P fi

l �= NULL then
15: Go to 9
16: end if
17: end if
18: if P fi

l �= NULL /* potentially augmentable session */ then
19: AddHeap(H, i)
20: end if
21: end while
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Fig. 5. W-Improving augmenting path

a case where the sessions have been allocated channels in
a lexicographic optimal way. However the allocation is not
worst-case fair since session F3 has 3 requests but it has been
allocated only one. However a W-Improving augmenting path
(A6B5A5B3A4) exists (Figure 5(b)) and the corresponding
augmentation results in the worst-case fair lexicographic allo-
cation (Figure 5(c)).

C. Computational Complexity

In Algorithm 2 we only check once whether a vertex
is augmentable or not for a total of N checks. Determin-
ing whether an improving augmenting path exists is O(|E|)
(whether we do a BFS or DFS based search). For each vertex,
the heap operations involve O(log |F|) steps, and the linked
list operations are O(1) (we extract and add only at the
beginning of the list). Therefore, for each vertex, the total
complexity involved is O(|E| + log |F|). Since there are at
most N vertices the total complexity due to all the iterations
is O(N(|E| + log |F|)). The computational complexity of
maximum cardinality matching for general bipartite graphs
is O(

√
NE)[25], for the ordered interval graphs (or doubly

convex) it is O(N)[7]. Setting up the linked list and the heap
can be amortized in the maximum matching computation and
therefore do not add to the complexity. |F| is at most N . Thus



Algorithm 3 Bool Augment(vs, u)

Require: Bipartite graph (A, B, E), Vertex vs, u ∈ A
Ensure: Augment along improving augmenting path

1: seen[vi]i=1...N = false /* whenever Alg. 2 calls Augment() */
2: Bool Augment(vs, u)
3: for all v ∈ B do
4: if (u, v) ∈ E and v �= matchL[u] then
5: if seen[v]==true then
6: Continue
7: end if
8: seen[v] = true
9: if |AfmatchR[v] | − |Afvs | >= 2 then

10: |AfmatchR[v] | = |AfmatchR[v] | − 1
11: matchL[matchR[v]] = −1
12: matchR[v] = u
13: matchL[u] = v
14: return true
15: else if Augment(vs, matchR[v]) == true then
16: matchR[v] = u
17: matchL[u] = v
18: return true
19: end if
20: end if
21: end for
22: return false

for a general bipartite request graph both LEX and W-LEX
optimization problems can be computed in O(N2.5 + N2) �
O(N2.5) steps. However |E| is at most KN for the realistic
case of ordered limited conversion (Recall that K is the highest
conversion degree of the OXC). K is small compared to N ;
hence |E| = O(N) and the complexity is O(N2) for this case.

VI. SIMULATIONS

Simulation Settings: We generate a variety of bipartite request
graphs with arbitrary conversion. We report results of two
configurations, the case of 1024 incoming wavelengths (not
necessarily unique) and 1024 available outgoing wavelengths
and the case of 2048 incoming wavelengths (again not neces-
sarily unique) and 2048 outgoing wavelengths with arbitrary
limited conversion degree. In the first configuration we assume
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that an incoming wavelength can be converted into a random
number (at most 4) of wavelengths. There are 12 sessions
and incoming channels are allocated to sessions randomly
according to a uniform distribution between [1, 12]. For the

second configuration, again we have 12 sessions but the
conversion degree is at most 6. Again the actual conversion
degree is chosen from a uniform random distribution taken
from [1, 6] and a wavelength is allocated to a session according
to the uniform distribution [1, 12].
Simulation Results: Figure 6,7,8 show the various session
requests and allocations alongside according to a maximum
matching, a LEX solution and a W-LEX solution respectively
for the 1024 × 1024 case. Results are shown in ascending
order of allocation. There are 944 requests and the matching
cardinality of each scheme is same (918 i.e. the maximum
matching cardinality). Note that the lowest allocation as per
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the maximum matching instance is 56 (Figure 6). However in
both the lexicographic optimal solutions the lowest allocation
is 63. Figure 7 also shows that sessions 2 and 6 with 95 and
106 requests respectively are allocated 79 channels whereas
sessions 1 and 3 with 86 and 87 requests are allocated 80
channels. This situation is reversed in Figure 8. Thus although
both are solutions for LEX, Figure 8 is a W-LEX solution.

The results of the second configuration (1974 requests, 1953
total allocations) are shown in Figures 9, 10 and 11. Figure 9
shows the allocations according to just a maximum matching
instance (143 (session 0) is the lowest allocation). Figure
10 shows a LEX solution (session 0 has the lowest allocation
equal to 151). Note that sessions 7, 9 and 2 have lower number
of requests than 1, 5 and 10 but are alloted higher number of
channels. This is reversed in Figure 11 which shows a W-LEX
solution.
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VII. CONCLUSIONS AND FUTURE WORK

We solve the lexicographic optimality fairness problem
in WDM systems. Unlike the problem of fair allocation of
discrete rates for multicasting, lexicographic optimal allocation
can be polynomially computed for session allotment in the
case of WDM OXCs, (and more generally for unit capacity
networks) by resolving a reduced min-cost flow problem in
flow networks. We also provide fast algorithms (based on
modified definitions of augmenting paths in bipartite graphs)
to solve LEX and W-LEX optimization problems and validate
results through simulation. An interesting area for future work
can be to explore whether a 1-step approach instead of 2-step
(maximum matching followed by augmentation methods) will
suffice.
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