
Guaranteed smooth switch scheduling with low
complexity

Satya R. Mohanty and Laxmi N. Bhuyan
Department of Computer Science and Engineering, University of California, Riverside, CA 92521

satya@cs.ucr.edu, bhuyan@cs.ucr.edu

Abstract— A smooth scheduling with guaranteed rate service
and bounded packet delay is a desired objective of any switch
scheduling algorithm. We present a scheme that generates low
jitter schedules with low computational complexity. The sched-
uler uses an integer decomposition of the rate-matrix, similar to
the Birkhoff-von Neumann decomposition. It improves the delay
and jitter performance of the smooth scheduler as described in
Keslassy et. al. with an increase in the number of permutation
matrices that the switch fabric has to cycle through. This
increase is shown to be a constant for all practical purposes.
Two algorithms are presented that have time complexity

���������	�
� ���
and space complexity

���������
and

�������
respectively. An

existing scheduling algorithm for single links, Smoothed Round
Robin, is employed for scheduling the permutation matrices. This
algorithm has a computational complexity overhead of

�������
and

ensures smooth scheduling.

I. INTRODUCTION

Amongst all high speed switch fabrics of core routers that
are prevalent today, the crossbar is the most common owing
to its simplicity and ability to support a variety of scheduling
mechanisms. Typically a crossbar switch consists of � input
ports and � output ports and each input is connected to every
output. Most switches also employ input queuing with virtual
output queues at each input port. This enables the switch fabric
to operate at only a relatively moderate speedup compared
to the input/output ports that operate at the line rate. Input
switches with a moderate speedup core require some buffering
at the output, however, when the crossbar runs at the same
speed as the line-rate, only input buffers are required. In
such systems, data transfer from inputs to outputs takes place
synchronously during discrete time intervals via fixed number
of bytes called cells. Therefore, in such switches, time can be
thought of as being divided into slots and data transfer takes
place during time slots. The objective is to design scheduling
algorithms that guarantee conflict-free transfer, i.e an input
port is not required to transmit cells to more than one output
port in each time slot and, similarly, at most one cell can be
transferred to any given output in one time slot.

II. BACKGROUND AND RELATED WORK

In the frame based approach[1] by Keslassy et. al., at the
start of a frame period, a matrix of rate requirements (from
various input ports to corresponding output ports), called a
guaranteed rate table (GRT), is assigned to the scheduler.
The scheduler constructs a conflict-free matching called the

This research was supported in part by NSF grant ������������� ����!

schedule table from this GRT, and sends packets through the
crossbar according to this matching.

Chang et. al. first showed that achieving this desired
conflict-free matching property of the scheduling objective is
equivalent to the problem of decomposing the GRT matrix into
constituent permutation matrices and enabling the crossbar
connections corresponding to these permutations. The time
that the switch remains in each configuration is proportional
to the coefficient of the corresponding permutation matrix in
the decomposition. They showed that an existing algorithm,
called the Birkhoff-Von Neumann [2] decomposition, for de-
composing any bimarkov matrix into a convex combination
of permutation matrices could be used for this problem. Any
switch that uses this algorithm is called the Birkhoff-Von
Neumann switch, hereby abbreviated as BVN. The scheduling
algorithm employed in this switch first transforms the GRT
matrix into a doubly stochastic matrix and then decomposes
the latter into a convex combination of individual permutation
matrices through a series of iterations. Each iterative phase
successively isolates a permutation until the decomposition
is complete. The BVN decomposition is based on either a
maximum matching or a simplified Ford-Fulkerson at each
stage of the algorithm. Arekapudi et. al [3] showed how to
speed up this process and also reduce memory access by using
the Slepian-Duguid theorem that achieves the decomposition
in one iteration.
Associated with this requirement are two potential problems,
low throughput and packet delay. Our aim is to design scalable
switch architectures using scheduling algorithms that have
demonstrably low computational complexity, provide isolation,
and guarantee good throughput, low packet delay and fairness
properties to individual flows.

III. LOW JITTER ALGORITHMS

If the BVN decomposition of a rate matrix " is to generate
a set of permutation matrices #%$ for &('*),+.-/+0100�+32 such
that

"4'
56
$�798

: $ # $ +
56
$�798

: $ ';)

the main objective of the Integer Low Jitter Decomposition
(ILJD) is to approximate the rate matrix " such that

"4< 6
$

= $?> $ +A@B' min

56
C 7D8

= $

where > $�� are full or partial permutation matrices with the
property that no two permutations have a non-zero entry in the
same position. The motivation for this kind of a scheduling
formulation is the authors’ contention that the BVN decom-
position causes any given entry to be striped across several
permutation matrices, and therefore irrespective of the type of
algorithm used to schedule the permutation matrices, there is
no control on when the individual entries will be scheduled. It
is shown that this integer programming problem (ILJD) is NP
hard, and an approximation heuristic is provided as a solution.
Similar algorithms have been proposed recently for slightly
different problems, e.g. [4], [5].

This heuristic algorithm called the Greedy Low-Jitter De-
composition (GLJD) attempts to minimize the number of
permutation matrices needed for approximating the GRT " ,
subject to the condition of non-overlapping positions of non-
zero entries in each permutation. It also attempts to minimize
the stretch factor @ (the so called bandwidth requirement
of the schedule tables. At each stage of the iteration, the
GLJD greedily chooses non-conflicting entries (two entries
of a matrix are said to be non-conflicting if they do not share
the same row or column) of the GRT and groups them into a
permutation matrix. The GRT can now be approximated by a
linear combination of these permutation matrices instead of a
convex combination as would be the case in the BVN decom-
position. Further, in this linear combination, the coefficient of
each of these permutation matrices is taken to be the largest
entry of all the non-conflicting elements that constitute that
permutation. The underlying assumption is that these entries
are approximately equal. When this assumption does not hold,
then a flow can be impacted adversely. The following example
illustrates this fact.

Consider a GRT in the form of a doubly stochastic matrix
" with entries ����� , where ����� represents the desired rate from
the input port � to the output port 	 .

"4'

�� 0 ��� � 0 � � � 0 ���� 0 � � � 0 ��� � 0 ���� 0 ��� � 0 ��� � 0 � �

��

The GLJD generates the following decomposition for this
GRT.

"�� � 0 ���

�) ����) ����)

��� � 0 ���

� ���)

) ����) �
��

� � 0 ���

� �) ����)

) ���
��

The schedule time obtained by this algorithm is
� 0 ������� '

) 0 ��� . Therefore it cannot accommodate a low-jitter traffic load
of more than 88 � !"! ' � 0 #�$%� of the offered traffic. The reason
for the discrepancy is the compromise made in generating
greedily fewer number of permutation matrices than the BVN
decomposition. For instance, the entry &'� +(��) desiring only a
rate of

� 0 � � is associated with the permutation having a weight
coefficient of

� 0 ��� .

It is instructive that one can obtain a different decomposition
with a larger number of permutation matrices but with a
better stretch factor @ . The idea is to represent each entry
in the GRT according to its binary representation, separate
out entries that have the similar powers of - into individual
matrices, and then decompose these matrices into permutation
matrices. For example the GRT of the previous example would
be decomposed as:

" '

� � 0 �,-

� � 0)�# � 0 � � � 0 �,-
� � 0)�#� 0 � � � 0 �,-

� � 0)�# � 0 �,-
� � 0)�#� 0 �,-

� � 0)�# � 0 �,-
� � 0)�# � 0 � �

��

" ' � 0 �,-

�) �)�))

)) �
�� � � 0)�#

�) �)�))
)) �

��
� � 0 � �

�*�) �
) ������)

��

which can finally be decomposed as a convex combination of
permutation matrices as shown below.

" ' � 0 � -

�+���)�) �

) ���
��,� � 0 �,-

�) ������)�) �
��

� � 0)�#

�-���)�) �

) ���
�� � � 0)�#

�) ������)�) �
��

� � 0 � �

� �) �

) ������)

��

This decomposition is exact but comes at a higher cost,
the number of matrices is now increased. The key question
therefore is to have an upper bound for the number of these
matrices. We know from [1], using the results of the greedy on-
line edge coloring problem [6] (Bar-Noy et. al), that the greedy
decomposition requires at most - �/.) matrices. If we assume
that the granularity of bandwidth is 1 bit (in practice a valid
assumption), then a bandwidth of 4 gigabits will necessitate
at most 32 matrices. Thus we will need a total of �,-0& - �1.
)�) matrices. The matrices (some of them may be identical)
can be can be economically stored by using efficient encoding
schemes to represent the unique ones. In the above example,
finally, there are only � unique permutation matrices.

" ' � 0 ���

�-���)�) �

) ���
�� � � 0 ���

�) ������)�) �
��

� � 0 � �

�*�) �

) ������)

��

In general if the maximum allocated bandwidth is " C32 4 bits,
and the minimum bandwidth is) bit, for an �5�(� input
crossbar switch the upper bound on the number of permu-
tations is & - �6.)�) log " C7284 . If the minimum bandwidth is

1) � � + 	 encode each entry � ��� in binary i.e.� ��� '�� $ � $�� 8 0100����	�
� � + 	 ') +10010 �
2) for � ' � 00103& ,

if ��� ' ')
> �� � ';)

else

> �� � ' �
Fig. 1. Matrix Decomposition into binary weights

some floating point number some appropriate scaling needs to
be done at first so that the GRT has only integer entries. If
the highest possible entry is "� after the scaling conversion,
then the number of permutations is & - � .))������ " <�� & ��) .
In practice, it is likely that this upper bound is not reached,
as is evident from the above example. We see therefore that
the premium on space for storing these permutations is only
increased by a constant for all practical purposes.

A. Binary Matrix Decomposition BMD

Given any matrix " (and therefore any GRT), BMD pro-
ceeds in two steps, first invoking Algorithm 1 and then 2.
These algorithms are presented formally in pseudo-code in
Figures 1 and 2. The first algorithm groups together similar
powers of 2 from each entry of " into a matrix (the associated
coefficient is the power of 2 involved in the grouping). The
second algorithm takes each such matrix, greedily decom-
poses it into unique permutation or sub-permutation (partial)
matrices. At the end of the final decomposition we have
2 (maybe partial) permutation matrices, every permutation
matrix associated with the same coefficient is non-conflicting
and we will refer to them as switching matrices, matrix > �
for instance will refer to the � th switching matrix.

The rationale behind this argument is that the granularity
of allocating bandwidth is discrete and the fact that the
logarithm of the maximum port capacity is of the order of a
few tenths or at most a hundred, and likely to remain so in
the forseeable future. Once this decomposition is achieved,
it is necessary to schedule these permutations or switching
matrices.

Computational Complexity: Algorithm 1 has a computational
complexity of � & ��������� "�) <�� & ����)�0 Greedy decomposition
of an individual matrix is � & ��������� ��)�0 Since at the end of
Algorithm 1, we have ����� "� number of matrices, where
"� can be taken to be a constant, the total computational
complexity is � & ��������� �,)�0

We make an observation here that provides some insight into
the following approach that we adopt to schedule the switching
matrices. In line with the idea of Keslassy [1], we observe
that apart from the number of permutations across which a
given port-pair entry is striped, the jitter also depends on the
intervening periods in which a particular switching matrix is
employed in the configuration. In various switching papers
this aspect has been fulfilled by using a generalized processor

1) &���' � + and � "! �" > �$# in Algorithm) do:
2) Sort all &'� +) elements of the matrix " in de-

scending order into list %
3) do until %'&'�(

) Let * �,+��-+9'�./�10 &�%)�+2*8�,+ �-+ is head of %) Let ��3 & �$4 	�4) be the set of all non-conflicting
non-zero entries of % + i.e. ��3 &'��4 	�4) '
"65 ��� #87 5 � � 9% + �:&' �$4 + 	9&' 	�4 0) �;5 ��� ��3 &'�<4 	�4 + set corresponding & � +)
entries of an empty matrix .=� to) . The
matrix .>� will be associated with a weight
coefficient * �?+ �-+ 0) If @%	 7 	BAC�EDF. � '�.G�

discard . � ; = � ' = �
�
*%& �$4 	�4)

else
Set . $ '�. � + = $ '�*%&'�$4 	�4)�+.& '4&

�
)	�) Delete the ��3 & ��4 	�4) entries from list % i.e.

% '�% .A��3 & �$4 		4)�0
Fig. 2. Greedy Non Conflicting decomposition

type [7] approach, either determining a start [1] or a finish
time [1], [2] for the 	 th schedule of matrix >�$.

This contributes another � & ��) complexity to the total
scheduling. We propose to solve this problem through an
O(1) complexity scheduling method, the Smoothed Round
Robin [8]. This algorithm was proposed for differentiating
flows based on reservations for a single link. We will apply
the basic idea of this method to switch scheduling.

IV. SMOOTHED ROUND ROBIN SRR SCHEDULING FOR

SWITCHING MATRICES

The SRR algorithm is described in detail in [8]. Neverthe-
less, we present an overview of the SRR algorithm for reasons
of clarity. The key idea in SRR is to use a weight matrix
WM and an associated weighted spread sequence WSS, the
algorithm scans the terms of the WSS to determine which
flows to serve. Each row of the weight matrix represents
the reservation of a flow encoded in binary. For any given
weight matrix and a corresponding WSS, the SRR algorithm
scans the WSS term by term; when the term is � , it will
serve the column &. � , where & is the order of the WSS.
All flows that have a non-zero entry for that column will be
serviced. A small example should suffice to illustrate. Suppose
there are � flows H 8 +2H � +2HJI with rates � 8 ' #��,2�K$0 � + � � '
)�-�� 2LK<0 � + ��I;' -NM�# 2�K$0 � + competing for a single link of
capacity M�)�- 2�K<0 � 0 The normalized weights of the flows areO 8 ';),+ O � '4-/+ O I '/� . Then the WM is given by

P!Q '

� P!R

8P!R
�P!R I

��
'

� ���)�) �
) ���

��

and corresponding WSS is) + -/+1),+(� +1) + -/+) 0 The flow service
sequence will be given by

HSI +2H � +2HSI +2H 8 +2HSI +2H � +2HSI 0

TABLE I

NOTATION USED IN ALGORITHMS AND PROOFS

�
Weight Matrix�����

Crossbar switch,
�

input ports,
�

output ports���	��
�� ����
Permutation matrices (possibly partial)�
Number of Permutation matrices� � weight of

 ���
permutation matrix�������

Length of a cell (in bytes)� �
The

 ���
spread sequence� � The

 ���
doubly linked list��� �

Iterator for the doubly linked list�"!
Iterator for scanning the WSS#%$ �	& # �����('

Current (Maximum) Order of the spread sequence)	*,+ Column of the WM currently being scanned� Bandwidth of each port-.�/�,�
Maximum jitter that can be encountered

Instead of considering individual flows, we take into account
each switching matrix > $ itself. The weighted coefficient
of > $ in the decomposition represents the fraction of the
normalized desired input-output port rate at which data is to be
transferred when the switching configuration is set to > $. The
GRT is generalized, if necessary, to a doubly sub-stochastic
matrix) to form the WM. This may be done according to some
definition of fairness measure[9], [10]. Also the coefficients= $ + encoded in binary, constitute the &"0�1 row of WM. In what
follows we will denote as a round the total length of a frame
in slots. We call the scheduling algorithm that we propose
SRRSW (Smooth Round Robin for switches).

A. Algorithm SRRSW

The Pseudo-code for SRRSW consists of three main rou-
tines, Add matrix(), Schedule Matrix() and Delete Matrix()
as presented in Figure 3. Add() and Delete() subroutines are
called at the start of a fresh round. The lowest granularity at
which bandwidth is allocated to a port pair is the slot transfer
time, i.e. the time taken by a cell to traverse the switch fabric.
SRRSW scans the WSS (generated for a given GRT), to
get a column of the WM, and sets up crossbar connections
according to switch configurations that have non-zero entry in
that column of the WM.

B. Elementary Properties OF SRRSW

Similar to SRR, SRRSW always forwards packets when
there are active flows in the system and is therefore work-
conserving (considering the switch as the scheduling entity,
not for the port-pair). Some elementary properties of SRRSW
are introduced here for sake of completeness. The reader can
refer to [8] for details. In a switch scenario, it helps to identify
the outport 	20�1 bound traffic from input port � + (hereby referred
to as port-pair &'� 	�)) as analogous to a flow in the single-link
scenario.

Fact 4.1: SRRSW finishes a round when it starts from the
first term of the & th WSS, and after visiting all the) +.- 01010 &
terms, back to the beginning of the sequence again.
Analysis of frame based schedulers (including BVN,GLJD) all
assume that all port-pair (ij) traffic is continuously backlogged

1) Add Matrix(> �)
At the start of a frame round:
) �43 ' �65.7 > �43 & > �)�0) Form a Weight Vector

P!R �98 for > � from= � 0) Add
P!R �:8 to last row of Matrix

Q 0) Insert nodes corresponding to
P!R �98 into

@ % �,+3@ % 8 +100101+.@ % $,;�<>= � 8) if new columns are added into
Q

update &2? ;
2) Delete Matrix(> �)

At the start of a frame round:
) �43 ' �65.7 > �43 & > �)) Remove the

P!R �98 row from
Q 0) Remove corresponding nodes from

@ % � +3@ % 8 +100101+.@ % $;�<>= � 8 according to
the coefficients of > � + = � 0) if(empty columns are deleted from M)

update &2? ;
./* ' ./* = �(3 & -,&@?8) ;

3) Schedule Matrix()
During a frame round:
*��S� is current column of WSS
) ���S�10 : do while &�.A8 �CB > �:8B&'D7����$�FEHG �)

Schedule &�. 8 � B > �:8)
. 8 � B > �98 '�. 8 � BJI 565K7) . E '�. E

�
) 0 If . E ' '4- $�L +2. E ';)) Find next * �S� to scan, set . 8 � accordingly.

Go to ���S�1090
Fig. 3. Add, Delete and Schedule Matrix Algorithms

during a frame round. Assuming this is true the following
holds

Fact 4.2: SRRSW visits port pair & �) ��� � times in a round,
where ��� � is the weight of port-pair & �)�0

Proof: To see that fact 4.2 holds, we make the ob-
servation that each permutation matrix > $ with coefficient= $ is visited by SRRSW = $ times in a round, and since� ��� 'NM 5

$�7 �%O PRQ(S � �UT V7 � = ��� + each input-output port pair & �) is
indeed visited � � � times in a round.

Fact 4.3: Suppose port-pair &'�) is backlogged, and has
been visited by SRRSW 5 times from time

�
to 7 , andW ����& � +>7) denotes the bytes served by SRRSW of port-pair& �) , then,

W ����& � +U7) ' 5;% C32 4
Fact 4.4: Suppose port-pairs & �)�+�& ��4 	�4) with desired rates& ��� � + ��� + � +) are continuously backlogged in a round, and the

number of visits to each by SRRSW is
R ��� and

R � + � + respec-
tively. Then at the end of a round

�����R � � . ��� + � +R �?+ �-+ ' �

C. Analysis of SRRSW Jitter Bounds

We now provide some important performance results con-
cerning the jitter, which was one of the primary motivations
behind this work. The following corollary is obvious from Fact
4.2

Corollary 4.5: The mean jitter for the traffic from input port� to output port 	 with a desired rate (weight) �%� � is 8��� 0
Proof: The total number of visits to all switching

matrices > $ + in which entry � 	 exists is � � � 0 Therefore the
mean jitter is 8����� 0
The above corollary guarantees that the desired mean jitter
is achieved. However we would like to explore whether a
bound exists on the worst case jitter. A trivial upper bound is
the scheduling interval for a complete frame. We would like
to determine whether a tighter bound exists. The following
theorem establishes that such a bound does in fact exist.

Theorem 4.6: Suppose there are 2 permutation matrices
at the end of the BMD and the Greedy Non Conflicting
algorithms in Figures 1,2. Let = $ ' M ��

7 � � $ O � ') + and� � & ? .) + where & ? is the order of the WSS. Then the
maximum jitter,

� C32 4 � -J% C7284= $

�
% C32 4 & 21.()�)

3
Proof: An input-output port-pair & �) is allowed to

transmit cells only when the scheduler chooses a switching
matrix > $ such that the entry > $� � is non-zero. We have to
find the maximum value of intervals, in terms of time slots,
between two consecutive visits to switching matrices that have
a non-zero (ij)-th entry.
Notice that even though the problem statements are similar,
this is not equivalent to the Schedule Delay Bound Theorem
(Th. 3) of SRR. In SRRSW since a port-pair &'�) may be
striped across different permutation matrices, it is not enough
to consider the maximum number of intervals between two
contiguous visits of the algorithm to the same column of the
WM. Notice, however, that the worst case will happen when
an & �)H0�1 entry is present only in one switching matrix, call
this >

�
. The weight of this switching matrix >

�
is denoted

by = � ' M $� 7 � � � O
� -
�
0 There are two cases:

)�)�- � � = � A(- �
	 8 .),0
if = � ' - � , then clearly there exists an integer � 8 s.t � � O ��� ' � 0
Otherwise, assume for the sake of contradiction that there does
not exist � 8 + � 8 A �.+ � 0 7
� � O � ' � 0 Then = � ' - �	 8 .A),+ which
violates the assumption. So � 8 exists. Between adjacent visits
to & �) � , the algorithm will visit the switching matrices that
have entries in the columns according to the spread spectrumW $�L1� � � � 8 +�& & ? .,� 8)�+ W $�L1� � � � 8 + and the column � . Thus
no. of visits '4-@M 5� 798 ��� O �
	 8

�
-N�.M 5� 798

�
0100�

- $ L � � � 8 M 5� 798 ��� O $�L � 8
�

M 5� 798 �%� O � �
�

M 5� 798 ��� O �' M $�L � 8�
7 � & - � � � M 5� 798 ��� O �)

�
M 5� 798 ��� O � �' 8� � M $�L1� 8�

7 � & - � M 5� 798 ��� O �)
�

M 5� 798 �%� O � �' 8� � & M $�L � 8�
7 � & - � M 5� 798 ��� O �) . M � � 8�

7 � -
�
M 5� 7D8 ��� O � �)

�
M 5� 798 ��� O � �' 8� � &�3 . M � � 8�

7 � -
�
M 5� 798 � � O ���)

�
M 5� 798 � � O ���

Therefore,� C32 4 '�� ;�<>=��� 8� � &�3 . M � � 8�
7 � -

�
M 5� 798 �%� O � �)

�
M 5� 798 ��� O � ���

A � � ;C<U=�
� .�� ;C<>=� & 8� � M

5� 798 ��� O � . M��� 798 ��� O �)-�) = � ' - �	 8 .() 0
Here the chain is at most

W $�L2� � � 8 W $�L � � � 8 + Therefore the
no. of visits ' -@M 5� 798 ��� O �	 8

�
-J� M 5� 798 �%� O �

and similarly, like in the previous case, A � � ;C<>=�
� .

� ;C<U=� & 8� � M
5� 7D8 ��� O �)

From both of the cases, the maximum jitter is
� C32 4 A

� � ;C<>=C��
�
� ;C<U= S 5 � 8 T�

Since 2 is � & ��) , then
� C32 4 ' � & ��)�+ this means that as

the number of ports increase, the jitter deteriorates linearly. It
also means that although each flow gets its share in a round
according to its weight, the worst case jitter is bounded by the
number of permutation matrices.

V. CONCLUSIONS AND FUTURE WORK

We propose a method to reduce the number of permutation
matrices and achieve low jitter. The SRRSW algorithm is
readily scalable because the SRR algorithm is inherently
scalable. By adjusting the rate granularity, different band-
widths can be accomodated. SRRSW is quite suitable for
high-speed networks where the configuration overhead in
scheduling permutation matrices is not high. As is common
to all round-robin schedulers SRRSW cannot provide short-
term fairness. An interesting problem to explore would be
to determine the minimum speedup required to provide hard
guarantees, and whether such guarantees are possible at all.
Future work can also explore similar round-robin based low
complexity scheduling algorithms deployed in switches and
the performance evaluation of a network consisting of such
switches through analytical or simulation techniques.

REFERENCES

[1] I. Keslassy, Murali Kodialam, T.V.Lakshman, and Dimitrios Stilladis.
On guaranteed smooth scheduling for input-queued switches. IEEE
INFOCOM, March 2003.

[2] C.S Chang, J.W. Chen, and H.Y. Huang. On service garantees for
input-buffered crossbar switches: a capacity decompostion approach by
birkhoff and von neumann. IEEE IWQoS, London, 1999.

[3] Srikanth Arekapudi, Shang-Tse Chuang, Isaac Keslassy, and N. McKe-
own. Configuring a load balanced switch in hardware. Hot Interconnects
12, Stanford, August 2004.

[4] Alexander Kesselman and Kirill Kogan. Non-preemptive scheduling of
optical switches. Proceedings of the IEEE Global Telecommunications
Conference, October 2004.

[5] Marcelo Prais and Celso C. Ribeiro. Reactive GRASP: An applica-
tion to a matrix decomposition problem in TDMA traffic assignment.
INFORMS Journal on Computing, 12:164–176, 2000.

[6] A. Bar-Noy, R. Motwani, and J. Naor. The greedy algorithm is optimal
for on-line edge coloring. Information Processing Letters, 44(5):251–
253, 1992.

[7] Abhay K. Parekh and Robert G. Gallager. A generalized processor
sharing approach to flow control in integrated services networks: The
single-node case. IEEE/ACM Transactions on Networking, June 1993.

[8] Guo Chuanxiong. SRR: an O(1) time complexity packet scheduler
for flows in multi-service packet networks. Proceedings of the ACM
SIGCOMM,, August 2001.

[9] R. Yim, N. Devroye, V. Tarokh, and H.T Kung. Achieving fairness in
two-dimensional generalized processor sharing. In Proceedings of the
22nd Biennial Symposium on Communications, pages 185–187, April
2004.

[10] Xiao Zhang and Laxmi Bhuyan. Achieving fairness and throughput for
best-effort traffic in input-queued crossbar switches. 2005.

