
A New Power-Efficient Scheme to Deliver
Time-Sensitive Data in Sensor Networks

Shanzhong Zhu, Wei Wang, and Chinya V. Ravishankar
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
Email:

�
szhu, wangw, ravi � @cs.ucr.edu

Abstract— We present a power-efficient scheme to
deliver time sensitive data packets in sensor net-
works. Data generated by sensors are frequently time
sensitive in applications such as hazard monitoring
systems, traffic controlling systems and battlefield
commanding systems. Such data are associated with
end-to-end deadlines, within which they must reach
the base station. We make two contributions in this
work. First, we propose a novel load-balanced routing
scheme that distributes data packets evenly among
the nodes relaying data towards the base station,
avoiding bottlenecks and increasing the likelihood
that packets will meet their deadlines. Second, we
propose a method of grouping smaller packets into
larger ones by delaying data transmissions at the
relaying nodes whenever slack times are positive. Our
packet grouping scheme significantly reduces packet
transmissions, reduces congestion, and saves power
in the sensor network. We verify the effectiveness of
our approach through extensive simulations using the
ns-2 simulation package.

I. INTRODUCTION

There has been considerable interest in large net-
works of wireless sensors in recent years. Typically,
sensors generate readings continuously, and deliver
the data to a base station (BS) through wireless
channels. Since wireless sensors are battery pow-
ered, and recharging is expensive or even impos-
sible in harsh conditions, it becomes important to
conserve power.

Real-time sensor networks have also received
much research attention recently [1]–[3], since sen-
sor data are frequently time-sensitive. For example,
freeway traffic information must be delivered to
the monitoring center promptly for real-time traffic
reports. Similarly, rapidly changing conditions in
hazard-monitoring or battlefield situations must be
reported quickly to the BS. In all such cases, the
data collected by sensors must arrive the BS before
a deadline to ensure freshness and correctness.

The power needed for a wireless transmission
increases as the square (or higher power) of the
radio communication radius [4]. Since sensors are
power-limited, data packets generated by sensors
are typically delivered to the BS over a series of
intermediate hops, rather than as a single long-range
transmission. While this strategy is unavoidable,
it does increase the inherent unpredictability of
wireless channels. We therefore assume that user-
specified deadlines are soft, meaning that packets
arriving late are still useful. Our goal is to ensure
a high confidence that packets will arrive at the BS
before the deadline.

We use the term sensor readings to denote the
values that originate at sensors. These are typically
a few bytes in size. In contrast, data packets are
created at relaying nodes to encapsulate one or
more sensor readings, and serve as the units for
network transmission. Packet size grows with the
number of sensor readings encapsulated, and is
limited by the network MTU. Real-time deadlines
are associated with sensor readings, which must be
delivered to the BS within the deadline. No dead-
lines are initially associated with packets, although
a packet may implicitly inherit the deadline of the
most urgent sensor reading it holds.

A. Power-Efficient Real-Time Delivery

We achieve both real-time delivery and power
efficiency through two effective approaches: load-
balanced routing and packet aggregation. We first
apply load-balanced routing to distribute traffic
as evenly as possible across the network, thereby
reducing end-to-end delays and balancing traffic
loads on the relaying nodes. Balancing loads is
very important for real-time sensor networks, since
a heavily loaded node will die soon and cause
urgent data to be delayed or lost. Our load-balanced
routing scheme guarantees even traffic distribution

on the nodes at each level. It boosts performance,
such as power consumption and end-to-end delay.
Next, we perform packet aggregation by grouping
smaller data packets into larger ones at relaying
nodes, thereby reducing the number of packets sent.
We are able to use this strategy, since all data
packets are destined for the BS.

Data transmission is often the dominant source
of power consumption in sensor networks [5]. Ag-
gregated packets convey the same payload as a
series of smaller packets, but are far more power-
efficient. Among other savings, we would transmit
fewer packet headers, and also send fewer MAC-
layer control packets (RTS/CTS/ACK), since chan-
nel contention is lowered.

Our aggregation strategy requires a relaying node
to hold arriving data packets, accumulate a number
of sensor readings, and regroup them into a larger
packet. Since each sensor reading is subject to an
end-to-end deadline, such grouping is possible only
when the actual end-to-end transmission delay for
a sensor reading is less than its deadline. The slack
time of a sensor reading is the difference between
its deadline and the source-to-BS transmission de-
lay. A positive slack time allows the sensor reading
to be held for some time at the relaying nodes along
the path, without missing its deadline. Among the
important questions we address is how to distribute
slack time among the relaying nodes.

The work in RAP [1] and SPEED [2] addresses
real-time data delivery in sensor networks. RAP
introduces a novel Velocity Monotonic Scheduling
algorithm to prioritize real-time packets at each
node, depending on its distance to the BS and on
packet deadlines. SPEED aims to meet deadlines by
maintaining a desired packet delivery rate across
the network. Our packet aggregation mechanism
can enhance both RAP and SPEED, since fewer
transmissions lead to lighter scheduling loads in
RAP and make it easier in SPEED to sustain the de-
sired delivery rate. SPEED uses non-deterministic
geographic forwarding to balance traffic among
multiple paths. Our load-balanced routing scheme
has the same goal, but balances loads better among
nodes at the same distance to the BS.

B. Our Contributions

We make several contributions in our work. First,
we present a novel method for routing packets
which balances traffic over the relaying sensor
nodes. Balancing traffic contributes to both real-

time delivery and power conservation in sensor
networks. Our routing algorithm routes packets to
the BS over multiple paths, so that the traffic on
each node is distributed evenly.

Second, we show how to reduce the number of
transmissions by holding and grouping sensor read-
ings at the relaying nodes. We propose an algorithm
to calculate the hold times for each sensor reading.
When a sensor reading reaches its permissible hold
time at a relaying node, a packet is formed by
grouping all accumulated sensor readings and sent
out. We study the performance of our packet aggre-
gation scheme on top of the load-balanced routing
scheme. However, our packet aggregation scheme
is intended to complement any underlying routing
scheme.

Finally, we perform extensive simulations on the
ns-2 platform to verify the feasibility and efficiency
of our scheme. We simulate sensor networks of
different sizes based on the 802.11 MAC protocol,
and measure both the deadline miss ratio and the
power consumption. Our results show that packets
can make their deadlines with high confidence and
low power consumptions.

The rest of this paper is organized as follows:
We review some related work in Section II. Our
system model is introduced in Section III. In Sec-
tion IV, we propose our load balanced routing
scheme, which aims to balance the traffic over the
relaying nodes. In Section V, we discuss our packet
grouping mechanism that allows relaying nodes
to combine packets together. Simulation results
are shown in Section VI to verify our approach.
Section VII concludes our work.

II. RELATED WORK

The literature largely addresses, in isolation,
the issue of real-time packet delivery in the de-
manding sensor network environment. For example,
SWAN [6] proposes a stateless network model to
deliver service differentiation in wireless ad-hoc
networks. To address the delay requirements for
the real-time traffic, rate control of the best-effort
TCP and UDP traffic is performed at each node.
In our work, we assume all data have real-time
requirements. Our mechanism allows data items
with looser deadlines to be held longer at the re-
laying nodes and grouped with those having tighter
deadlines, so that we can form larger packets.

A novel real-time routing protocol, SPEED, was
introduced in [2], with the goal of maintaining

a desired packet delivery rate across the sensor
network, so that end-to-end delay becomes pro-
portional to the source-destination distance. Each
sensor chooses the neighbours that can sustain the
desired packet delivery rate. If no such neighbours
exist, packets are dropped to reduce congestion.
Our approach can enhance SPEED by performing
load-balanced routing and packet aggregation. Both
mechanisms contribute to maintaining a higher de-
livery rate of real-time packets and reducing data
transmissions in the network.

Several MAC layer protocols have been designed
to accommodate real-time requirements. RAP [1]
is a new real-time communication architecture for
sensor networks. Its velocity monotonic scheduling
mechanism is a key component in prioritizing real-
time traffic at the MAC layer. In [7], an EDF-based
MAC layer protocol was proposed. The periodicity
of sensor-generated traffic allows contention to be
resolved implicitly, without need for exchange-
control packets for channel reservation. Our ap-
proach, in contrast, requires no real-time support
from the MAC layer, and can work with existing
MAC protocols such as 802.11.

In-network aggregation at intermediate sensor
nodes to reduce data transmissions has been studied
[8]–[10]. It is typical to compute partial results
at intermediate nodes and send them to the BS.
In our work, we do not simply consider query-
level aggregation, but ask a more basic question:
Since all sensor data are destined for the same base
station, how do we group a number of incoming
data packets into a larger one at the intermediate
nodes under real-time constraints?

The idea of combining small packets into larger
packets was first studied in the Internet context [11],
where small packets such as TCP ACKs and TCP
SYNs can be combined at routers to improve end-
to-end performance. The time by which a packet
can be delayed at a router is simply given as a
parameter. In our work, however, the allowable
delay for each packet at any node is computed
based on its deadline. A novel packet aggregation
scheme was proposed in sensor networks [12],
which utilized the queueing delays at each relay-
ing node to group small packets into larger ones.
Although the scheme also aimed to reduce overall
transmissions and better utilize the channel, it was
not studied in the real-time context, while our major
contribution is how to assign the slack time across
nodes.

: Source sensors
: Data packets

...

Scheduler

Packet

Outgoing
Queue

Sensor Network

Assembler

Packet

Incoming Traffic

Base Station
Sensor Node

⋃
s1

s2 s4 s3

Fig. 1. The System Model

III. OUR SYSTEM MODEL

Sensor readings are the basic data units generated
by sensors, and packets are units of transmission,
and typically include multiple sensor readings. A
deadline is associated with each sensor reading,
depending on its urgency. We assume that deadlines
are application-specific, and are determined on-line,
at the time the sensor reading is generated.

Fig. 1 shows our real-time sensor network model.
Let ��� �����	�
���
�	�	�	���
����� be the set of sensor
nodes in the network, and S � � be the set
of source sensors from which readings originate.
Sensor reading ��� is associated with a deadline� � , the allowable elapsed time before it must reach
the BS. At any time � , a sensor reading has the
form: ��� � �
����� � �� �"! � ��� # # , where � � is the value of the
reading, ��� is the source sensor, � �� is a generation
timestamp, and !$�����"# is the time remaining until the
deadline. Initially, we will have ! � ��� �� #%� � � . These
values will be used to determine the permissible
hold time for the reading at relaying nodes (see
Section V).

A. Sensor Nodes

Our sensor node model is shown in Fig. 1.
The packet assembler groups sensor readings from
different incoming packets into larger packets. A
sensor reading may be delayed upto a certain hold
time determined by parameters such as the avaliable
slack time, the incoming packet rate and maximum
packet payload size. Sensor readings are grouped
by the packet assembler until one of them reaches
its hold time. At this point, the grouped packet is
scheduled for transmission on an outgoing link by
the packet scheduler based on our load-balanced
routing scheme (see Section IV).

B. Data Generation Model

We assume sensor readings are generated ape-
riodically at sources with stringent deadlines. A
typical scenario for us is 50–100 data items to be

generated each second in a network of a hundred
sensors, and deadlines to be in the hundreds of
milliseconds (see Section VI). This model is more
general and challenging than assuming periodical
generation of sensor readings, such as in [13].

C. The Power Model

We achieve power efficiency by two means. First,
we balance the power consumption at individual
nodes by balancing the number of packets they
transmit using our load-balanced routing scheme.
Balancing power consumption extends network
lifetime by avoiding bottleneck nodes that will
exhaust their power quickly due to heavy trans-
mission loads. Second, we manage to reduce the
number of transmissions at each node by grouping
small packets into larger ones, so that the power
consumed by transmitting and receiving can be
significantly reduced throughout the network.

IV. LOAD BALANCED ROUTING

Routing in ad hoc networks has been exten-
sively studied, and various routing schemes, such as
DSDV [14], DSR [15], and AODV [16], have been
proposed. These generally work well in dynamic
environments. We focus on static wireless ad-hoc
sensor networks, where nodes are immobile and all
packets are headed for the same destination, namely
the BS. Power limitations in sensor networks make
traffic balancing a critical issue, since a congested
node relaying a high volume of packets will soon
exhaust its battery and fail. Moreover, a bottleneck
node will cause packets to experience longer delays,
possibly missing their deadlines.

Several load balanced routing schemes have been
proposed for wireless sensor networks [17]–[19].
In [17], a load balanced backbone tree (LBB-
tree) was constructed to balance the loads over
the nodes that are one hop away from the BS.
In LBB-tree scheme, all packets generated by a
given source will follow the same path to the BS.
In contrast, we adopt multi-path routing in our
scheme, distributing packets over several paths to
achieve better balanced traffic (see Section VI-B).
Hong et al. [19] proposed a multi-path routing
scheme for sensor networks, where a level i node
randomly picks a level i-1 neighbour with equal
probability to relay its data packet towards the BS.
As we will show in Fig. 2, our multi-path routing
scheme can ditribute traffic more balanced than this
simple random scheme.

6

15 3

12

9

0

14

7

11
13

10

5

4

1

8

2

(a) A sensor network

4 5

15

12

14

13

8

6

9

11

7

2

30

1

10

Level 3Level 2Level 1

(b) The routing network

Fig. 2. The routing network for 15 sensor nodes

We first show how to build a routing network
based on which packets are delivered to the BS
(see Section IV-A). Then, we propose a novel load-
balanced routing algorithm in Section IV-B.

A. The Routing Network

A routing network (RN) is a DAG (directed
acyclical graph) [20] which allows packets to reach
the BS over multiple paths. A common approach
to building an RN is to assign a level number to
each sensor depending on its distance to the BS,
and deliver data packets from higher-level nodes
to lower-level nodes [8], [9], [18], [21]. The BS
is at level 0. Each node at level � has one or
more parents at level ����� to which it can send
packets. The level of a node and its parents are
determined by the performance metric used, such
as hop count, delay, or signal strength, and can
be different by applications. In one application [8],
[18], [19], the level of a node equals the number
of hops in the shortest distance to the BS, and its
parents are the neighbours on its shortest paths. In
another [21], its level may be ���	�
� , where ���
is the level of the node it first hears from during
the route construction phase, and its parents may
be those level- ��� neighbours with low delays. Our
load balanced routing algorithm works well with
either scheme.

We use the same construction scheme as in [19].
Fig. 2 shows the RN for a simple network of 15
sensor nodes. Clearly, any path from a source to
the BS is a shortest path in the resulting RN.

B. The Routing Algorithm

Given the RN, we propose a novel load balanced
routing (LBR) scheme to balance traffic loads level
by level, from highest to lowest. Each node must be
able to determine what fraction of traffic should be
assigned to each of its outgoing links, so that the
traffic loads can be balanced across the nodes at

1

2

3

5

4

9

11

12

10
6

10.1

18.0

level 2

Base
Station

Level 1 Level 3

8

15.5

12.0

7

(a)

1

2

3

5

4

9

11

12

10
6

Base
Station

8

7

10.1

0.0

6.0

6.0

6.0

12.9

12.7

2.6

18.0
Level 1 level 2 Level 3

6.0

12.9

0.0

12.0

15.5

10.1

(b)

Fig. 3. (a) A RN with 4 sources. (b) Final traffic
distribution.

the next (lower) level. We map the routing problem
to the maximum flow problem [20] by construct-
ing a flow network based on the link topology
between the current and the next level. We then
incrementally distribute the flow from the nodes
at the current level to the nodes at the next level
to achieve load balancing. We give an example in
Fig. 3 to show how this approach works.

Fig. 3(a) shows a RN of 12 sensor nodes, among
which nodes 1, 6, 7, and 8 are sources generating
data packets at certain rates. We start by construct-
ing a flow network for nodes in level 2 and 3.

1) Constructing the Flow Network: Each
level-2 or level-3 node in the RN is represented
by a node in the flow network. A virtual source VS
and a virtual sink VT are created. The edges and
their capacities are set up as follows:
� An edge is created to connect VS to each level-

3 node. Its edge capacity is the traffic load on
the corresponding level-3 node. If there is any
source node at level 2 (such as node 1), an
edge connecting the VS to the node is also
created, with the edge capacity being the load
generated at the node.

� An inter-level edge is created to connect a
level-3 node and a level-2 node if there is
a link connecting the two nodes in the RN.
The edge capacity is the traffic load on the
corresponding level-3 node.

� A sink edge is created to connect each level-2
node to the virtual sink VT . The edge capacity
is set to a small value initially, and adjusted
incrementally until no more flows can be aug-
mented to the edges (see Section IV-B.2).

The flows on the sink edges represent the loads
on the corresponding level-2 nodes, while the flows
on the inter-level edges represent the traffic on the
corresponding links in the RN. We will balance the
flows on the sink edges by adjusting their capacities

incrementally.
2) Incrementally Adjusting the Sink-Edge Ca-

pacities: Our key idea is to let the sink-edge
capacities gradually guide the flows towards an
even distribution. We initially set the sink-edge
capacities to a small value so that all sink edges
will be saturated, i.e., we maximize the flows on
these edges so that they reach the edge capacities.
We then increment the capacities by a small fixed
value, � , recalculate the maximum flow, and check
if the sink edges can still be saturated. We continue
until some sink edge can no longer be saturated,
indicating that no additional load can be placed on
the corresponding node. The flow on that sink edge
now has its final value. We can remove the sink
edge, the corresponding node, and the associated
inter-level edges from the flow network, and incre-
ment the capacities of the rest sink edges as before.
This process stops when the maximum network
flow reaches the total capacities out of the source
VS, i.e., no more flows can be augmented to the sink
edges. A detailed description of the algorithm as
well as its complexity analysis can be found in [22].

After obtaining the final balanced loads (see
Fig. 3(b)), we can assign a link probability ���"��� � #
to each level-3 node ��� ’s outgoing link � � , where
� � ��� � # �	� ��� � #�
�� � � � # . The values � ��� � # and � � � � #
denote the fraction of traffic on link � � and the
load on node �
� , respectively. When a packet must
be routed from �
� , it will randomly pick a parent
based on � � ��� � # . For example, Node 7 will relay a
packet towards Node 2 with probability ����� , and
towards Node 3 with probability ����� . The traffic
distribution between level 1 and 2 is determined in
the same way.

C. Power Efficiency

Each node runs a copy of LBR so that it can
locally determine how to assign its traffic to the
outgoing links. Each node needs two pieces of
information: the load distribution at the current
level, and the topology of other nodes at the current
level (see Section IV-B.1).

We propagate the loads to other same-level nodes
as follows: Each node is set to work in promiscuous
mode [23] so that it can overhear packets sent by
its neighbours. Let the siblings of node � be those
nodes that share a parent with � . Node � (at level �)
propagates its load to its siblings by piggybacking
its load value on regular data packets sent to its
parents at level � � � . As the parents send these

packets one level down the RN, their neighbours at
level � , i.e., the siblings of node � , overhear these
packets and get the load value. In turn, these sibling
nodes piggyback the load value on data packets sent
to their parents, and so on. � ’s load value is thus
propagated to all reachable level- � nodes. If two
nodes are not reachable at level � , their traffic loads
can be scheduled independently, as with nodes 6
and 8 in Fig. 3.

Our scheme is power-efficient since it causes
no extra transmissions. A node needs to propa-
gate its load value only when it is detected to
change significantly since a small change in the
load has little effect on the load distribution. Nodes
can propagate topology information to its siblings
through a similar mechanism. Since sensor nodes
are relatively static in typical applications, the
topology information only needs to be exchanged
initially, and updated once in a while.

V. PACKET AGGREGATION

All packets are destined to the BS. Each packet
contains one or more sensor readings, each of
which is associated with a deadline. We will form
larger packets by holding and accumulating sensor
readings at the relaying nodes. The longer we
hold them, the better chance we have to group
more sensor readings into a packet. However, a
sensor reading can only be held for a time bounded
by its deadline. An important question for us to
consider is: Given the deadline for individual sensor
readings, how to determine its hold time at each
relaying node along the path to the BS, so that
the overall number of packet transmissions can be
minimized?

A. Determining Hold Times

Let sensor reading � � arrive at relaying node �
�
at time � � by � � ’s clock. Let ! � ��� � � �"# be the time
remaining until � � ’s deadline at time � . � � will try
to delay retransmission of � � to accumulate more
readings, and to form a larger packet. However, � �
may delay ��� for no longer than some maximum
time, depending on factors such as � � ’s deadline
and the maximum packet payload size.

At any time � , let
� � ��� � � � # be the permissible

hold duration, before which � � must dispatch � � .
Let � � ����# be the E2E transmission delay from ���
to the BS along path � . We define � � ’s slack time� �"��� �
� �"# at time � as

� �"����� � �"# � ! � ����� � �"# ���	��
� �
� �"����#$��� (1)

This slack time bounds the sum of all remaining
hold times for ��� on the way to the BS. Since
LBR allows data packets to reach the BS over
multiple paths, we are safe in defining slack time
in terms of the maximum E2E transmission delay
between � � and BS. We will discuss how to evaluate
�	��
��
� �"����#$� in Section V-B. If

� � ����� � �"#���� , ���
must be forwarded immediately. If

� � ��� � � � #���� ,
we can afford to hold ��� at �
� . We now address the
question of what fraction of � � ’s slack time should
be allocated to its hold time at each � � .

In Section V-A.1, we provide an upper bound for
� � ’s hold time on each relaying node. In Section V-
A.2, we discuss how � � ’s hold time on � � affacts
its outgoing packet rate, based on which we for-
mulate an optimization problem in Section V-A.3,
minimizing the total number of transmissions along
� � ’s path to the BS.

To simplify our analysis, we assume that each
sensor node has enough memory to accommodate
all the data arriving during the specified hold time.
In practice, we can bound the allowable hold time
at each node to avoid memory overflow.

1) Bounding Hold Times: At any time � , let� � ��� # � � � �	� ���
������� � ������� � � be the set of sen-
sor readings accumulated at ��� . Let the permis-
sible hold durations for these sensor readings be
� � �"������� �"#$� , � �"! � � ���"# . Our approach is to dis-
patch a packet containing all the accumulated sen-
sor readings as soon as one of them reaches the end
of its permissible hold time. That is, we dispatch at
time �$# a packet containing all readings in

� � ���%# # ,
if we find

� �"���&#�� �$# # �'� for some sensor reading
� # ! � � ��� # # .

When sensor reading � � reaches � � at time � � ,
we can compute

� � ������� � � # for all ���(! � � ��� � # .
At this time, let � # be the reading with the
shortest remaining hold time, that is,

� � ���&#�� � � # �
�)+* � � � ������� � � #$� . Clearly, � � will be dispatched no
later than

� � ��� # � � ��# , and there is no point in setting
� � ’s hold time larger this value. Hence,

� � ��� � � � #,� � � ��� # � �"#
� �.- � �/� (2)

For convenience, we will use
� � ����� # and

� �"����� #
instead of

� �"��� � � � � # and
� � ��� � � � ��# , when no con-

fusion can arise.
2) Hold Time vs. Outgoing Packet Rate: If

the deadline for an arriving � � is so stringent that
it is the most urgent sensor reading at ��� , � � will
expire its hold time first and govern the outgoing
packet rate at �
� . We study how the hold times of

the urgent sensor readings affect the outgoing rate
of the grouped packets at a given node, and use this
analysis to propose a scheme to determine the hold
times for each sensor reading.

Let ��� ’s slack time be so small that it will always
exhaust its hold time earlier than any other sensor
readings at each node along its path. That is, ��� will
dictate the outgoing packet rate at each node. The
following theorem characterizes the relationship
between � � ’s hold time and the outgoing packet
rate at relaying node ��� .
Theorem 1. At node ��� , let ��� be the aggregate
rate of data packets received from its children and
itself, and let

� � ��� � # be � � ’s permissible hold time
when ��� arrives at �
� . If � � is the outgoing rate of
the grouped packets, then� � � ���� ��� � � ����� # � � (3)

By Little’s Law [24], ��� � �"��� ��# is the average
number of packets accumulated before � � leaves
node � � . Thus, by grouping � � � � ��� � # �
� packets
(together with the packet containing � �) into one,
the outgoing packet rate is

�������� �	� ��
	� ��
 � .
3) Obtaining the Hold Times: If � � governs

the outgoing packet rates of the relaying nodes,
we want to distribute the total slack time

��� ��� � # ,
obtained at source � ��

, across the relaying nodes
to minimize the number of transmissions. Let
��� �� �
� � � �	�	�	� �
� �� � BS � be the path taken by � � , and� �"����� # be ��� ’s permissble hold time on � �� (�"�
� ���). Since longer packets will experience higher
transmission error rates [25], we must bound the
number of readings contained in a packet. Let

�
be the maximum payload size of the packet and �� �
be the average incoming packet size at node � �� ,
both expressed in terms of the number of sensor
readings. We want to obtain

�)+*
� ��
��� � � ��� � subject to the constraints��

��� � � �"����� #.� � � ����� #
� (4)�� � ��� � � � � ��� � # � � #,� � � �	� � ��� � (5)

Constraint 4 restricts the total hold time to
� � ��� � # ,

and Constraint 5 restricts the outgoing packet size
at each node to

�
. The term �� � ����� � � ����� # � � #

represents the average outgoing packet size at � �� ,
since � � � � ��� � # � � is the total number of incoming
packets grouped together. When the packet size

reaches
�

, it should be sent out since there is no
point in delaying it further.

Since � � is governed by Equation 3, we have
a nonlinear optimization problem in terms of� � ����� #
�	�	�	� � � � ����� # . We note that increasing hold
times increases the size of packets but reduces their
numbers, so that � � � � decreases monotonically as� � � �"��� ��# increases. We therefore treat Constraint 4
as an equality and apply the method of Lagrange
multipliers [26] to derive the optimal hold times
that will minimze � � � � .

���� � �
�
� � � � ��� ��# � �� � � �� � � �� � � � (6)

where �
�

is the level of the source node. We can
next rearrange Constraint 5 to get

� � �� �
� �!�� ��� �"��� � (7)

Finally, we incorporate Constraint 2 by writing
� � � �� � � � ��� # � � � # � (8)

We can now combine Equations 6, 7, and 8 to write

� � ����� #%� �)+* � ���� � ��� �� � �#� � �� � � � � � �$� � (9)

In practice, both
� � �� and

� � � �� can be easily deter-
mined on � � when ��� arrives. To obtain

� �� , we must

calculate
� �� � �% �'& � � ��� � # ��� � � � ���(� % �� �*) , where� � ��� � # is ��� ’s remaining slack time on arriving on

� � . However, it is difficult to evaluate � � � � �� (since
it is unknown which path � � will take after � � , due
to our LBR mechanism. But we do know that

� ��
will take the most conservative (minimum) value if
the path ��� takes is the most heavily loaded, that
is, the value of � � � � �� (is the minimum among
those of all possible paths from � � to the BS. Since
we need to collect the 1-hop delay values along
the path with the maximum transmission delay to
determine the slack time (see Equation 10), we can
propagate the estimated � along with its 1-hop
delay to � � without additional cost (see Section V-
B). The � � �� � value thus obtained is conservative,
but incurs little overhead. We show in Section VI-
C.1 that our approach performs far better than other
schemes, and is easy to implement. A detailed
description of our scheme can be found in [22].

B. E2E Delay Estimation and Propagation

The E2E transmission delay ��� ����# is the sum of
the 1-hop delays along path � , that is,

� � ����# �
�+-,/. � � ��0 �
 � � (10)

where ��� is the � th node on � and � �-0 �
 � denotes
the 1-hop delay from � � to the next hop ���
 � . We
estimate the 1-hop delay as in [2]. At node ��� , we
record the round-trip time � �-0 �
 � between the time
a packet arrives at the outgoing queue and the time
the MAC-layer ACK is received for that packet.
Now, � �-0 �
 � is estimated as ���-0 �
 � � �� � �� �-0 �
 � ��� �
 � # , where � �
 � is the ACK processing time at
the receiving node, which can be piggybacked in
the ACK packet.

The 1-hop delay must be estimated periodically,
and propagated when a significant change is de-
tected. Each node maintains the maximum E2E
delay value � ����� and the � ����� value for each of its
parents. Whenever node � � (at level �) detects a
significant change in its 1-hop delay, it updates its
� ����� by recomputing the E2E delay along each of
its parents and choosing the largest value. Now, � �
piggybacks its new � ����� in a regular data packet
sent towards the BS. Meanwhile, � � ’s neighbours at
level � � � can overhear the packet and obtain the
new � ����� , based on which they can update their
own � ����� values. These (� � �)-level nodes, in
turn, piggyback their � ����� in regular data packets
so that their neighbours at level � �	� can overhear
it. In this manner, � � ’s new 1-hop delay will be
propagated to all reachable higher-level nodes, and
their maximum E2E delays will be updated. This
approach is power efficient since we exploit the
ability of sensor nodes to overhear other nodes.

VI. EXPERIMENTS

We evaluated our approach through extensive
simulations on the ns-2 simulator [27].

A. The Simulation Setup

We used a single BS with multiple sensors de-
ployed uniformly in a square region of ��
/� �
�
��
/� � � � , with the BS at the center. We simulated
networks of 100 and 150 nodes, with a subset of
the nodes selected as sources that generated sensor
readings periodically. The generation rates were
varied to reflect different workloads. All sensor data
were delivered to the BS. We chose UDP as our
transport layer protocol, and 802.11 [23] as our
MAC protocol, which was also used in other real-
time sensor networks, such as [1] and [2].

Each sensor reading was set to 8 bytes and the
maximum packet payload size was set to 128 bytes
in our simulations. The default 802.11 MTU size
(1500 bytes) is too large to serve as an effective test

of our approach. We used the shadowing model [28]
as our radio propagation model. We set the value
of path loss exponent [27] as 2.0, and the value of
shadowing deviation as 4.0, representing a typical
outdoor environment. We set the radio communica-
tion range as ��
/�*� and chose the rate of correct
reception as 0.95. We used the AODV routing
protocol as the basis for our comparisons. AODV
discovers a single fixed route for each source.

To measure power, we adopted the power
parameters from the Chipcon CC1000 RF
transceiver [29], which is used as the radio module
in both MICA2 and MICA2DOT [30] sensor
models. When operated at � ��� ���	�

, its receiving
power is ������� ��� , and transmitting power is
� �/��� ��� , with the output power of � ��� � . In our
experiments, each node was set to the same power
level initially, and we measured the remaining
power after the simulation ran for some time.

B. Performance of LBR

1) Load Balancing: We first simulated LBR
on the sensor network shown in Fig. 2 for �/� �
seconds. Fig. 4(a) shows the traffic load distribution
for all nodes. All leaf nodes (1, 2, 3, 8, 13, and 15)
generated sensor readings at the rate of � units/sec.
We compared LBR with AODV and the random
(RAND) routing scheme. In RAND, since each
node randomly picks an outgoing link in the RN
with equal probability to send/relay a packet, the
traffic distribution may not be even. Our results
show that the loads are more balanced under LBR.
We note that nodes 4, 7, 9 relay high traffic volumes
under AODV. RAND balances traffic loads better
than AODV in general, but node 6 relays heavy
traffic under RAND. Traffic loads are very balanced
in LBR.

We also compare LBR with RAND and LBB-
Tree [17], on the same topology, using the Balance
Index (� � �%#) metric [17] which measures the degree
of load balancing among a given set of nodes � .
Generally, the higher � is, the more balanced the
loads are. The loads among nodes in � are perfectly
balanced if � � �%# � � .

In Fig. 4(b), we show � on the level-1 nodes,
since nodes at level 1 are very likely to be most
heavily loaded, and balancing their loads is impor-
tant. Sources were randomly chosen from the leaf
nodes, and we calculated the average � value for
a given number of sources. Each source generated
readings at the rate of � units/sec. The � values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

1400

1600

1800

node ID

nu
m

be
r

of
 s

en
t/r

el
ay

ed
 p

ac
ke

ts AODV
RAND
LBR

(a) Load distribution

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of sources

ba
la

nc
e

in
de

x
(

β)

RAND
LBB Tree
LBR

(b) � value (level-1
nodes)

Fig. 4. LBR performance for network in Fig. 2.

0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

3500

4000

data generation rate (units/sec)

m
ax

im
um

 E
2E

 d
el

ay
 (

m
s)

AODV
LBR

(a) 100 sensor nodes

0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

data generation rate (units/sec)

m
ax

im
um

 E
2E

 d
el

ay
 (

m
s)

AODV
LBR

(b) 150 sensor nodes

Fig. 5. Average of max E2E delays (without packet aggregation)

for our scheme are much higher than those for the
LBB-Tree and RAND, showing that our scheme
balances loads much better. When there are only
a few sources, the � values are low for all three
schemes, since these few sources may not require
all nodes to relay traffic. LBR can achieve a � value
as high as 0.95.

2) E2E Delays: Fig. 5 illustrates the maximum
E2E delays from sensor sources to the BS for
different node densities. The maximum E2E delay
for a given sensor network is the longest delay ex-
perienced by packets, and measures the worst-case
packet delay in the sensor network. We randomly
generated ten node deployments for each sensor
density, and averaged the maximum E2E delays
over the deployments. All sensors generated data
at the same rate, in the range � � � – � ��� units/sec.

As shown in Fig. 5, the maximum E2E delay
under AODV is much higher than under LBR.
Under AODV, the E2E delay increases drastically
at the beginning and then starts to drop, due to
the fact that a large percentage of packets get
dropped in the network (see Fig. 7). The E2E
delay value stays extremely low and stable under
LBR. The significantly longer delay under AODV
is due to two reasons. First, packets experience
longer queueing delays at highly congested nodes.
Second, the contention for the wireless channel
is more fierce at congested nodes, also increasing
delays. Packets clearly experience shorter delays
under LBR, as we manage to remove the bottleneck
nodes in the network by distributing the loads more
evenly. Thus, packets can meet more stringent real-
time requirements under LBR.

C. Performance of Packet Aggregation

Having verified the benefits of LBR, we next
evaluated how the packet aggregation mechanism
further reduces transmissions. Unless explicitly
specified, we ran the simulations in this Section for
350 seconds on a topology of 100 nodes. Fig. 6

shows the total number of network-level packet
transmissions in the entire network. All sensors
generated data at the same rate, and we associated
a single deadline for all sensor readings from a
given source. The deadline was set to

� � times the
average E2E transmission delay from the source
to the BS. We compared our packet aggregation
scheme (LBR-G) under

� � � � and
� � � ��� with

LBR (without aggregation) and AODV. LBR is a
special case of LBR-G with

� � � � .
The LBR-G scheme sends far fewer packets

than AODV when the data generation rates are
low. However, after rate � � � units/sec, the total
number of packet transmissions under AODV levels
off but keeps increasing under our scheme. This
apparent paradox is explained by Fig. 7. In AODV,
heavy packet loss occurs after a data rate of � � �
units/sec due to congestion at bottleneck nodes. A
benign leveling off of the number of transmissions
under AODV actually masks an underlying disaster.
In contrast, packets are routed more evenly in
the network under our scheme, fewer packets are
dropped, and much higher throughput is achieved.
As deadlines get less stringent, packet transmissions
are further reduced, since packets can afford more
delays at the relaying nodes and more packets are
likely to be grouped together.

1) Allocating Hold Times: Fig. 8 compares our
hold time allocation algorithm (LBR-G) with two
other hold time allocation approaches, namely UNI-
FORM and SRC, under two

� � values. Each node
generated data at the same rate, shown on the x-
axis. UNIFORM distributes the available slack time
uniformly across all the relaying nodes along each
path to the BS, while SRC allocates all available
slack time to the source node. Clearly, our scheme
incurs much fewer packet transmissions than the
others. For example, when

� � � � , our scheme
transmits about ��
�� fewer packets than SRC, and
about ��� � fewer packets than UNIFORM at the
rate � ��� � ���
������ . As

� � increases, the difference

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

4

data generation rate (units/sec)

to
ta

l n
um

be
r

of
 p

ac
ke

t t
ra

ns
m

is
si

on
s

AODV
LBR
LBR−G,df=2
LBR−G,df=10

Fig. 6. Number of packets
compared

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

data generation rate (units/sec)

lo
ss

 o
f d

at
a

pa
ck

et
s

(%
) AODV

LBR
LBR−G,df=2
LBR−G,df=10

Fig. 7. Packet loss com-
pared

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

4

data generation rate (units/sec)

to
ta

l n
um

be
r

of
 tr

an
sm

itt
ed

 p
ac

ke
ts SRC, df=2

SRC, df=10
UNIFORM, df=2
UNIFORM, df=10
LBR−G, df=2
LBR−G, df=10

Fig. 8. Hold time allocation
schemes compared

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

E2E deadline (ms)

m
is

s
ra

tio

AODV, 0.5 units/sec
LBR−G, 0.5 units/sec
AODV, 0.2 units/sec
LBR−G, 0.2 units/sec

Fig. 9. E2E deadline miss
ratio

between LBR-G and UNIFORM/SRC becomes less
significant, since more packets will reach the max-
imum payload size with less stringent deadlines
under all schemes.

2) Meeting Real-time Requirements: In Fig. 9,
we show the fraction of packets missing their dead-
lines for data generation rates of � ��� units/sec and
� ��
 units/sec. Each sensor reading was associated
with the same deadline. When the deadlines are so
stringent that the slack time is negative, most pack-
ets will miss their deadline under both schemes,
and the LBR-G is reduced to LBR. However, the
miss ratio drops rapidly for LBR-G as the deadlines
are less stringent, and LBR-G always has a lower
miss ratio than AODV. When the traffic load is
high (� ��
 units/sec), the advantage of LBR-G is
more dramatic, since both load balanced routing
and packet aggregation contributes to lower E2E
delays.

SPEED [2] reported their miss ratio in a network
of 100 sensors, of which only 6 generated traffic,
with the others presumably serving as relaying
nodes. With a total data generation rate of 20
packets/sec and E2E deadline of 200 � � , SPEED
shows a deadline miss ratio of around 2%, com-
pared with 12% for AODV. Our scheme shows
roughly the same miss ratio as SPEED for the same
total data generation rate and deadline. However,
we run our experiments in a more demanding set
of conditions, in which all nodes in the system
generate packets. As a result, AODV shows a miss
ratio of nearly 30% in our context. This shows
that our scheme is more effective than SPEED in
comparable conditions.

3) Power Savings: We measured power con-
sumption at each node. Fig. 10 shows the power
consumed per on-time sensor reading for AODV
and LBR-G. This metric reflects how well each
scheme can meet real-time requirements in a power-
efficient way.

Our results clearly show that the power con-
sumed per on-time sensor reading is far lower for

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

data generation rate (units/sec)

en
er

gy
 c

on
su

m
ed

 (
Jo

ul
es

)

AODV
LBR−G

Fig. 10. Energy Consumed
per on-time sensor reading
(deadline: ���������)

0 100 200 300 400 500 600 700 800 900 100011001200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

simulation time (sec)

pe
rc

en
ta

ge
 o

f s
ur

vi
vi

ng
 n

od
es AODV

LBR
LBR−G

Fig. 11. Fraction of surviv-
ing nodes (deadline: ���������)

LBR-G. AODV power consumption increases dras-
tically as the data rates increase, while it remains
extremely stable for LBR-G. There are two reasons
for this effect. First, AODV requires more power
because it needs more MAC layer transmissions.
Second, many packets fail to meet their deadlines
under AODV than under LBR-G (see Fig. 9).

Extending the network lifetime is an important
goal for a real-time sensor network. In Fig. 11,
we compare the fraction of surviving nodes under
AODV and our scheme, after a given simulation
time. The initial energy level was set to
	� . The
survivor fraction starts to drop rapidly from �/� � �����
under AODV, while it remains ��� � � under both
LBR and LBR-G. The LBR scheme achieves ��
/� �
longer network lifetime than AODV, and LBR-
G achieves
���� longer lifetime than LBR, which
suggests that both the load-balanced routing scheme
and the packet aggregation scheme contribute sig-
nificantly to extending the network lifetime.

VII. CONCLUSIONS

We presented a power-efficient scheme to deliver
real-time data in sensor networks. We proposed
a novel load-balanced routing scheme (LBR), in
which packets can take multiple paths to the BS.
LBR distributes data traffic very evenly over nodes
at each level to avoid congestion and improve
E2E transmission delays. We introduced a packet
aggregation scheme over LBR, which allows sensor
data units to be held at the intermediate nodes and
grouped to form larger packets and reduce transmis-

sions. Larger packets are more power-efficient than
many small packets, since channel contention is
lower. We proposed an algorithm to determine hold
times at the relaying nodes based on E2E delays.

Our simulation results show that LBR can sig-
nificantly reduce the E2E transmission delays com-
pared with AODV, which means we can achieve
more stringent real-time requirements under LBR.
Our packet aggregation scheme can further reduce
packet transmissions in the network, thus saving
more power for sensors.

ACKNOWLEDGMENT

This work was supported by a grant from Tata
Consultancy Services, Inc.

REFERENCES

[1] C. Lu, B. M. Blum, T. F. Abdelzaher, S. John A, and
T. He, “RAP: A real-time communication architecture
for large-scale wireless sensor networks,” in Proc. of the
8th IEEE RTAS Symposium, San Jose, September 2002.

[2] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher,
“SPEED: A stateless protocol for real-time communi-
cation in sensor networks,” in Proc. of the 23rd Inter-
national Conference on Distributed Computing Systems
(ICDCS), Providence, Rhode Island, May 2003.

[3] X. Liu, Q. Wang, L. Sha, and W. He, “Optimal QOS sam-
pling frequency assignment for real-time wireless sensor
networks,” in Proc. of the 24th IEEE RTSS Symposium,
Cancun, Mexico, December 2003.

[4] W. R. Heinzelman, A. Chandrakasan, and H. Balakrish-
nan, “Energy-efficient communication protocol for wire-
less microsensor networks,” in Proc. of the 33rd Hawaii
Intl. Conf. on System Sciences, 2000.

[5] S. Madden and M. J. Franklin, “Fjording the stream: An
architecture for queries over streaming sensor data,” in
Proc. of the 18th ICDE Conf, San Jose, 2002.

[6] G. S. Ahn, A. T. Campbell, A. Veres, and L. H. Sun,
“SWAN: Service differentiation in stateless wireless ad
hoc networks,” in Proc. of the 21st IEEE INFOCOM,
New York, June 2002.

[7] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo, “An
implicit prioritized access protocol for wireless sensor
networks,” in Proc. of the 23rd IEEE Real-Time Systems
Symposium (RTSS), Austin, Texas, December 2002.

[8] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “TAG: A tiny aggregation service for ad-hoc
sensor networks,” in Proc. of OSDI, December 2002.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Di-
rected diffusion: A scalable and robust communication
paradigm for sensor networks,” in Proc. of MobiCom,
August 2000.

[10] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and
deltas: Efficient and robust aggregation in sensor network
streams,” in Proc. of the ACM SIGMOD, June 2005.

[11] B. R. Badrinath and P. Sudame, “Gathercast: The de-
sign and implementation of a programmable aggregation
mechanism for the internet,” in Proc. of the 9th Inter-
national Conference on Computer Communications and
Networks, October 2000.

[12] T. He, B. M. Blum, J. A. Stankovic, and T. Abdelzaher,
“Aida: Adaptive application-independent data aggrega-
tion in wireless sensor networks,” in ACM Transactions
on Embedded Computing Systems, vol. 3(2), May 2004.

[13] O. Chipara, C. Lu, and G.-C. Roman, “Efficient power
management based on application timing semantics for
wireless sensor networks,” in Proc. of the 25th ICDCS,
June 2005.

[14] C. E. Perkins, “Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers,”
in Proc. of the ACM SIGCOMM’94, 1994.

[15] D. B. Johnson and D. A. Maltz, “Dynamic source routing
in ad hoc wireless networks,” in Mobile Computing.
Kluwer Academic Publishers, 1996, vol. 353.

[16] C. E. Perkins and E. M. Royer, “Ad hoc on-demand dis-
tance vector routing,” in Proc. of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, New
Orleans, LA, Feburary 1999.

[17] P. H. Hsiao, A. Hwang, H.T.Kung, and D. Vlah, “Load-
balancing routing for wireless access networks,” in Proc.
of the 20th IEEE INFOCOM, Anchorage, Alaska, April
2001.

[18] S. C. Huang and R. H. Jan, “Energy-aware load balanced
routing schemes for sensor networks,” in Proc. of the
10th Intl Conference on Parallel and Distributed Systems,
Newport Beach, California, July 2004.

[19] X. Hong, M. Gerla, W. Hanbiao, and L. Clare, “Load
balanced, energy-aware communications for mars sensor
networks,” in Proc. of the Aerospace Conference, vol 3,
2002.

[20] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intro-
duction to Algorithms. McGraw-Hill Book Company,
1997.

[21] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysan-
this, “TINA: A scheme for temporal coherency-aware in-
network aggregation,” in Proc. of the 3rd ACM MobiDE
Workshop, September 2003.

[22] S.Zhu, W.Wang, C.V.Ravishankar: PERT: A New Power-
Efficient Real-Time Packet Delivery Scheme for Sensor
Networks, Technical Report, Univ. of California, River-
side (2006), http://www.cs.ucr.edu/ � szhu/pert.pdf.

[23] “Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications,” in IEEE 802.11
Standard, 1997.

[24] L. Kleinrock, Queueing Systems: Theory, Volume 1. John
Wiley and Sons, 1975.

[25] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient
mac protocol for wireless sensor networks,” in Proc. of
the 21st INFOCOM, June 2002.

[26] D. P. Bertsekas, Constrained Optimization and Lagrange
Multiplier methods. Belmont, Mass. : Athena Scientific,
1996.

[27] S. McCanne and S. Floyd., “ns network simulator,”
http://www.isi.edu/nsnam/ns/.

[28] T. S. Rappaport, Wireless Communications, Principles
and Practice. Prentice Hall, 1996.

[29] “Chipcon CC1000 RF transceiver datasheet,”
http://www.chipcon.com, april, 2004.

[30] “MPR/MIB mote sensor hardware users manual,”
http://www.xbow.com/Support/manuals.

