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Abstract

In this paper we present the design and implemen-

tation of a distributed index architecture to facilitate

metadata discovery on large networks. Many current

information discovery systems use crawlers to search

the Internet, constructing metadata from the data they

�nd. Instead, we propose a general distributed index ar-

chitecture that uses descriptive hierarchies to organize

metadata and route metadata queries to sites likely to

produce relevant results.

We are testing the architecture in the NASA Earth

Observing System domain. We address some require-

ments particular to EOS, then discuss the design im-

plications. We also present the results of preliminary

performance studies on a prototype.

1 Introduction

The amount of available Web information and the ac-
cess frequencies have grown rapidly, but methods to
locate and access desired data remain rudimentary. In-
formation consumers must sift ine�ciently through large
amounts of data. Users are increasingly interested in
accessing structured data sets such as phone books
which contain names, addresses and phone numbers,
or product catalogs which typically contain product
names, features and prices. This pattern resembles dis-
tributed database access more than traditional �le or
document system access. The problem of �nding data
of interest, from a large set of distributed sites, has
been called information discovery .

An e�ective approach to facilitating informationdis-
covery is to provide and manage metadata (i.e., data
that describes the original data). Recent work in nam-
ing and information systems has focused on construct-
ing metadata to reduce the time required to �nd infor-
mation in the Internet. Most of these approaches use
centralized indices, and function by using crawlers or
robots to search the Internet, constructing metadata
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from the data they �nd. Archie [1] was one of the �rst
central indexing systems. It indexed the names of File
Transfer Protocol (FTP) �les located on a subset of
popular Internet hosts. More recent examples are the
Web search engines, which use crawlers that extract
text from Web pages.

Our work is motivated by four observations. First,
systems using centralized indices require considerable
investment in disk space and CPU resources, without
which they will not scale as the amount of metadata
increases. Slow response times observed in early ver-
sions of Archie and Lycos [2] illustrate over-utilization
di�culties with the centralized model. Only after ad-
ditional investment in resources could reasonable per-
formance be attained.

Second, these systems function independently, re-
sulting in duplication of metadata and ine�cient use
of network resources. Because these systems are at-
tempting to index diverse data, they use simple index-
ing techniques, such as text string �ltering. We argue
that data creators are in a better position to create
metadata using domain-speci�c techniques that might
include additional metadata not found in the original
data.

Third, the widely-used metadata systems index �les
or Web pages, so they do not include metadata stored
in databases. This class of metadata will get larger as
the growth in Web-based commerce leads to more on-
line product catalogs. Finally, many institutions have
developed hierarchical structures for describing and or-
ganizing their data. We argue that these descriptive hi-
erarchies can be used to organize distributed metadata.
The Dewey Decimal System [3] and the MARC stan-
dard [4] are good examples of existing descriptive hier-
archies. They are used to hierarchically organize and
integrate the holdings of many diverse libraries. The
Database of Occupational Titles (DOT) [5, 6] and the
Earth Observing System (EOS) Global Change Mas-
ter Directory parameters [7] are two other descriptive
hierarchies.
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Field name Description

Granule ID system speci�c granule identi�er

Sensor instrument that produced data

DAAC name of DAAC archiving this

granule

Data set name of dataset with granule

is associated

Platform platform containing

the instrument

Starting date-time temporal cover of data

Ending date-time temporal cover of data

Location bounding polygon

Geophysical one or more controlled

Parameters keywords describing the data

Table 1: Subset of EOSDIS Metadata

The NASA EOS Distributed Information System
(EOSDIS) is a distributed catalog of collected data,
similar to a growing number of Internet catalog appli-
cations. We will use the NASA EOSDIS environment
to validate our solution. In the next section we provide
an overview of the EOSDIS requirements and their im-
pact on our architecture.

1.1 Overview of the EOS Environment

The primary data managed in the EOSDIS and other
catalog systems is metadata about products. In EOS-
DIS this is satellite or in-situ data, or in general, the
results of scienti�c experiments. Preliminary estimates
are that EOS archive centers will process millions if
not billions of granules (metadata records) per day [8]
when operational.

In the current version of EOSDIS, a user enters val-
ues in an X11-based forms interface that produces an
SQL-like query string. The result of an EOSDIS query
is a set of metadata entries (called granules) describ-
ing data held at Distributed Active Archive Centers
(DAACs) throughout the world. There are presently
seven DAACs, but it is expected that this number will
grow to over 100 [8]. Table 1 shows a subset of EOS
metadata �elds returned by metadata queries. For
some metadata, granule ID can be used to download
the actual data from the DAACs. All data can be or-
dered (for postal delivery) from the DAACs using the
granule ID.

EOS metadata are currently stored in heterogeneous
relational databases at the DAACs that archive the
data. The distributed EOSDIS metadata is presented
as a traditional distributed database global aggregate
view representing the union of all DAAC metadata ta-
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bles. No actual metadata is stored in the centralized
EOSDIS. Instead, the central site initiates a query at
each of the DAACs. The DAACs in turn translate the
query into the format and semantics of the local meta-
database.

The problems with the EOSDIS are similar to those
of all centralized architectures: without considerable
investment in resources centralized systems are likely
to su�er overloading as utilization increases, and sys-
tem failure or network partitions can make the entire
system unavailable. A more serious problem speci�c
to EOSDIS is that the global view does not use index-
ing, so each query results in an exhaustive search of all
DAACs.

One simple solution to the load problem associ-
ated with centralized systems is to replicate the index.
However, maintaining consistency now requires replica-
tion/concurrency control algorithms that do not scale
well. And, as the universe of metadata records and
metadata sites becomes large the index will become
unmanageable [9].

Below are general distributed system, as well as
EOSDIS requirements:

Availability & Reliability: There should be no cen-
tral point of failure. If one metadata supplier
crashes the system should be able to satisfy re-
quests for unrelated metadata.

EOSDIS need not be 100% available. However,
the failure of a DAAC server should result only
in the loss of metadata from that DAAC. This
choice provides no redundancy, but does provide
gradual degradation of service as failures occur.
The system must manage the e�ects of compo-
nent failure, including network partitions and node
shutdowns at link end-points as well as at inter-
mediate nodes. The literature o�ers a number of
possible solutions [10, 11, 12].

Distributed Administration: The EOSDIS solution
must respect the administrative boundaries that
exist between DAAC organizations. In particu-
lar, each DAAC must have �nal control over all
its resources. This means DAACs must be free to
decide what metadata, if any, is made available
through the system, and limit the resources used
on behalf of a client.

Consistency: EOSDIS users will expect 100 percent
recall, that is, expect to see all metadata in the
system's universe that satis�es a query. Caching
metadata results at or near the client is an obvi-
ous technique for improving response time, pro-
vided there is locality of reference. At this point
it is unclear if EOS users will repeatedly search
.00 (c) 1998 IEEE



for the same data. What is more certain is that a
user will want a standing order . A standing order
is a query that remains active, so that metadata
servers notify (or deliver metadata to) the user
whenever new metadata becomes available.

An issue a�ecting caching is that EOS metadata
rarely changes, but new metadata is continually
created. This means accuracy of any cached meta-
data is almost guaranteed. However, relying solely
on the cached metadata will result in progres-
sively lower recall.

Scaling: To estimate the query load, we draw on the
EOS user modeling results [13]. At 1000 queries
per day, this gives us a rough query rate of 41.6
queries per hour, or slightly less than one query
per minute.

1.2 Our Approach

We introduce a general distributed index architecture
that uses descriptive hierarchies to organize metadata
and route metadata queries to sites likely to produce
relevant results. Descriptive hierarchies allow queries
to be directed at any participating server, eliminating
the bottleneck of directing every metadata query to a
centralized site for routing. They do not require com-
plete replication of metadata to distribute load away
from a single site to mirror sites. We also use in-
dex caching to exploit user locality of reference. Sim-
ilar queries bene�t from cached index results. In this
work we eliminate continual network crawling for data
and metadata construction by expanding the notion of
a referral (which describes the metadata holdings of
a site). This approach permits more e�cient use of
network bandwidth. Finally, our system provides ac-
cess to metadata contained in databases by supporting
attribute-value queries and using heterogeneous data-
base techniques to communicatewith metadata servers.

Earlier work, such as Nomenclator, demonstrates
the e�ectiveness of metadata distribution and caching
in the X.500 naming service. Our work generalizes this
approach to information systems. Harvest [14] (using
the Inde subsystem [15]) constructs a distributed index
shared between brokers which summarize the contents
of selected metadata archives. Like Harvest, our work
deals with resources and information found on the In-
ternet. However, we have added hierarchical indices
to considerably reduce the amount of metadata repli-
cated and support the e�cient search of distributed
metadata.

In the remainder of this paper we present the DSMS
architecture and results from experiments on a proto-
type. Sections 2 describes the DSMS architecture, is-
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sues and approaches. Section 3 presents results from
experiments measuring distributed index search response
times as well as a preliminary response time model. Fi-
nally, section 4 discusses conclusions and some future
directions.

2 The Domain-Speci�c Metadata Ser-

vice Architecture

This section describes an alternative architecture, called
the Domain-Speci�cMetadata Service (DSMS), for pro-
viding scalable metadata service. We begin with some
important assumptions about the metadata environ-
ment.

Federation of Semi-autonomous Organizations:

Organizations must be willing to run a server that
will accept and run pseudo-SQL queries on the
local metadata. This is reasonable, since Web
servers are designed to accept attribute-value quer-
ies and pass them to a database engine. At this
time we assume the metadata servers return records
that include unique identi�ers that can be used
to access the data.

Descriptive Hierarchy: The DSMS architecture as-
sumes that there exists a hierarchy of terms. Terms
in the hierarchy may have multiple parents as
well as appear more than once. This is not an
unreasonable assumption in many domains, par-
ticularly in EOS.

Subject �eld: Terms from the Subject Hierarchy ap-
pear in a metadata subject �eld.

No Data: Actual data is stored and managed outside
the proposed system, which deals with metadata
only.

2.1 Architecture Overview

There are three major components of the DSMS archi-
tecture.

DSMS Server: Stores pointers to metadata and re-
sponds to queries from resolvers.

Resolver: This is the primary search engine, and con-
tacts DSMS servers in an attempt to �nd meta-
data. The resolver typically resides on the same
host as the user agent.

User Agent: ADSMS user agent accepts queries from
users (e.g. via HTTP servers). The user agent
repackages the query and sends it to the DSMS
resolver. The agent then waits for results, which
it formats for display and returns to the user.
.00 (c) 1998 IEEE
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Figure 1: DSMS Architecture

Data archive sites will produce and manage the
metadata, and must provide interfaces to access local
data. We propose accessing metadata through Web
servers (labeled Metadata Server in Figure 1). Presently,
the DSMS architecture relies on external metadata pro-
duction systems. We assume the existence of �le-type
speci�c metadata extractors such as the Essence in-
dexer [16].

An additional component is the User Interface ve-
neer. We envision the user interface will be a forms-
based Web page. In this environment the agent is
started by the user interface page via Common Gate-
way Interface (CGI). The agent in turn starts the re-
solver. Ideally, the agent and resolver should also run
on the host running the Web browser, to distribute pro-
cessing and improve performance. However, this is dif-
�cult to achieve in the current Web environment, since
programs can only be run at the HTTP server site, and
not from Web browsers on the user's host. There are a
number of solutions to this problem. As the Web ma-
tures it is likely that the browsers will change. Alter-
natively, Java can be used to overcome this limitation.
Another solution used by many packages is to run a
separate client program that can accept a user query,
then start a Web browser to display the results. For
simplicity, we will adopt the separate client approach.

Figure 1 exposes the major data structures within
the DSMS components. These structures are discussed
in the next two sections. Sections 2.5 describes query
processing.

2.2 Centroid Hierarchy

A novel feature of our architecture is the use of a de-
scriptive hierarchy to describe entries in a distributed
index. In DSMS the descriptive hierarchy is called a
centroid hierarchy. Salton [17] de�nes a centroid as a
synthetic average for a group of documents. In data-
base modeling terms, the centroid hierarchy is a gen-
1060-3425/98 $10
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Figure 2: Partial Descriptive Hierarchy (EOS Domain)

eralization structure [18], which de�nes an \is-a" rela-
tionship. Figure 2 depicts a partial centroid hierarchy
using a portion of the EOS Global Change Master Di-
rectory (GCMD) parameter hierarchy [7]. Terms at
higher levels in the structure are more general than
lower level terms. In this example, Precipitation is the
centroid for the term Snow , and Atmospheric Dynam-

ics is the centroid for Precipitation. So, in our archi-
tecture the centroid hierarchy de�nes a mapping from
lower level terms to higher level terms.

At this time the DSMS architecture prescribes only
a simple keyword-based centroid hierarchy. We under-
stand without further guidance on centroid hierarchy
construction there will be considerable variance in de-
tail, completeness and quality of the centroid hierar-
chies.

Authority for a centroid hierarchy is delegated by
an organization controlling a root DSMS server. A
new centroid hierarchy is created by inserting a new
high-level description, or domain, at the root DSMS.
For example, our partial hierarchy is part of the EOS
domain, for which an authoritative DSMS server is de-
�ned. This is the only server allowed to modify the
centroid hierarchy rooted at the new domain. At the
root DSMS server there is a list of all domains.

There are three types of domain updates: adding
a new subdomain (centroid), changing the name of an
existing subdomain, and removing an existing subdo-
main. In general operations on a domain can be dis-
cussed in terms of add and delete. The primary issue is
to maintain consistency by ensuring updates propagate
to all DSMS servers that replicate a domain.

There are two types of inconsistencies arising from
updates. In the �rst, the domain data at a DSMS
server is updated, but centroids in the referrals main-
tained at the resolver and/or server contain referrals
that may conict with the new domain. The second
case is the opposite. New referrals have been created
using the updated domain centroids, but a server has
not received the domain update. Below we describe
each of these anomalies in context of the updates de-
.00 (c) 1998 IEEE



scribed in the last paragraph.
Adding a new subdomain (centroid)

The authority issues an add operation to the DSMS
servers that subscribe to the domain. Each of those
servers, in turn, noti�es their peers (other DSMS servers).
old domain { new referral : a resolver may retrieve a
referral that uses the new centroid and query a DSMS
server that has not received the domain update. In
this case the centroid search would return an error to
the resolver, which would then disregard the referral
for the duration of the metadata search. The e�ect is
a possible reduction in recall, as a potential metadata
source is skipped.
new domain { old referral : Add is non-destructive, so
old referrals are not a�ected.
Moving an existing subdomain

This operation re-links all subdomains (centroids) from
one domain to another domain.
old domain { new referral : a resolver may retrieve a
referral that uses a centroid in the new domain and a
query that uses the old centroid. In this case the server
will not �nd the new referral. The e�ect is a possible
reduction in recall, as a potential metadata source is
skipped.
new domain { old referral : If a DSMS server has re-
ceived the domain update, then queries using old refer-
rals will fail unless the query uses centroid paths (see
centroid paths at the end of this section).
Removing an existing subdomain

This operation removes all subdomains (centroids) from
a target subdomain.
old domain { new referral : There will be no new re-
ferrals for a deleted subdomain. A server may contain
and return old referrals that have not been expunged.
new domain { old referral : If a DSMS server has re-
ceived the domain update, then it will not use the old
referrals unless the query uses centroids paths (see cen-
troid paths at the end of this section).

These consistency problems are a combination of
�le system consistency and search scope-performance
trade-o�s. As a result, our basic design for domain con-
sistency draws heavily from solutions in the �le systems
literature [12, 11]. The choice of consistency model de-
pends on the environment. Three major factors inu-
encing that choice are; how crucial is data accuracy,
write propagation costs and frequency. If accuracy is
important, locking is one popular method used to im-
plement strong consistency. Locking protocols, how-
ever, typically require several rounds of communica-
tion with all replicas to accomplish their task [19, 20].
If updates are few and the cost of inaccurate data high,
then the cost of locking may be tolerable.

Standards bodies typically work in cycles in which
1060-3425/98 $10
they accumulate and review a number of proposed chang-
es. Hence, we do not expect updates to the centroid
hierarchy to be continuous. We expect domains to
change more often. If a referral contains a new centroid
that has not been inserted into a local DSMS server
being queried, the lookup on the centroid will return a
\centroid not found" error, causing the referral lookup
process to discard that referral. The metadata query
will continue, but recall may be reduced as a result of
the discarded referral. We feel the reduced recall does
not justify the cost of strong consistency, so a weaker
model is used to disseminate domain updates.

Multiple inheritance within a domain is also an is-
sue. In our sample domain, in addition to being a
type of Atmospheric Dynamics, Precipitation is also
a type of Hydrologic Property . This ambiguity is re-
solved by modifying the query to accommodate a cen-

troid path. Since the centroid hierarchy is a tree each
node can be uniquely identi�ed by a path composed of
nodes/centroids starting at the root. The DSMS server
requires an unambiguous centroid path. This can be
supplied by the user or by an aliasing mechanism.

2.3 Referral Index/Cache

Many systems use ideas similar to referrals. In such
systems, the metadata refers to or gives the location
of data. Our referrals are like meta-metadata in that
they give the location of metadata or other referrals.
A DSMS referral contains a centroid and the name of
a metadata site that has metadata described by the
centroid. Referrals are used to restrict the number of
sites searched during a metadata query. Centroids are
used in referrals to describe the contents of a metadata
archive.

No server is expected to store all the referrals ex-
ported on the network. Instead, servers join replication
groups that maintain consistent subsets of all referrals.
The subset maintained by any replication group is de-
�ned by a centroid.

Using referrals has a number of advantages. First,
metadata can now be created by organizations more fa-
miliar with the data. Also, there is no need for robots
to crawl around the network looking for data. Finally,
referrals change less frequently than metadata hold-
ings, because they describe the contents of a metadata
site in general terms. Referrals stored at the various
DSMS servers make-up a distributed index.

The DSMS approach does require that either a meta-
data site or broker create a referral describing metadata
to be exported. While this does impose more work on
the data creator we feel the resulting data accessibility
out-weighs the additional e�ort. Furthermore, we are
.00 (c) 1998 IEEE



now seeing that Web page creators are willing to use
the HTML metadata tag to include descriptive key-
words.

The consistency issues for the distributed index are
similar to those of the centroid hierarchy. As with the
centroid hierarchy, DSMS servers form groups to main-
tain consistency of the distributed index. However,
referrals may also be cached by resolvers not partic-
ipating in the replication group. Finally, any server
can add a referral to the index. Consistency within the
replication group is based on a weak model to avoid the
cost of locks. Fault recovery for the distributed index
will use the same technique as the centroid hierarchy.

Metadata queries are processed in two phases. Dur-
ing the �rst phase the distributed index is used to col-
lect referrals fromDSMS servers. The implicit assump-
tion to this point has been that all referrals are of equal
quality. So, during the second phase referrals can be
processed in any order. In reality, referrals are not
typically equal. Referral quality can be quanti�ed by
the number of metadata entries returned or metadata
server access speed. For now we choose return size es-
timate not only because it is the simplest measure, but
because it has a direct impact on the query recall. The
more results the higher the recall. We would like the
system to search the sites with the highest results size
estimates �rst. We intend to use the GlOSS technique
for ranking metadata sites [21]. GlOSS uses keyword
frequency and weight to rank a set of candidate data
sites in an order that produces the highest recall from
a minimal number of sites.

2.4 Metadata Cache

The metadata is the highest volume data managed by
DSMS. Although exact metadata results size depends
on the query, EOS metadata results can easily include
1000 records. Under the current assumptions the re-
sults will be HTML pages. When the resolver receives
new metadata results from metadata servers, it places
the pages at the end of a circular bu�er. This al-
lows the resolver to work in parallel, querying meta-
data sites while the agent reads results from the head
of the bu�er. Subsequent searches on the same query
will access the metadata bu�er before contacting any
DSMS servers.

There is considerable heterogeneity among meta-
data archives sites. Sites will archive di�erent meta-
data and as a result have di�erent schemas. Sites are
also likely to store the metadata in di�erent database
systems. Space does not permit a discussion on het-
erogeneity in this paper. We refer the reader to the ex-
tensive literature on the issue [22, 23, 20, 24, 25]. Since
1060-3425/98 $1
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we are primarily concerned with product metadata that
can be stored in tables, this discussion assumes the use
of relational databases which can be used to manage
tabular data.

2.5 DSMS Operation

This section describes how DSMS servers are connected
and how metadata queries are processed.

When a new metadata site comes on-line, the ad-
ministrators must locate an existing DSMS server that
will accept referrals from them. At least one of these bi-
lateral agreements is required for a new site to become
part of the DSMS system. It would be most e�cient to
connect DSMS servers in a hierarchy. For example, the
new DSMS server in the Space Sciences department at
a university might connect to the DSMS server in the
Engineering College of that university. In this scenario,
the two servers have become peers. Upon connecting to
its peer, the new server chooses a domain to replicate
and joins a replication group for a centroid under that
domain. This is e�ectively accomplished by performing
a metadata query and registering as a replica with one
of the servers that responds with referrals. The new
server will also export its referrals to the replication
group. Figure 3 illustrates how servers can be used to
partition a domain.

S0 is the DSMS root server. It contains referrals for
all the domains in the system. S3 contains referrals for
precipitation; while S4, S5, S6 and S7 contain meta-
data for various referrals under precipitation. Given
the partial hierarchy in Figure 3, the query

SELECT granules

WHERE centroid = "Snow"

AND location={lat. 82.50,

lon. 90; ...}

has the centroid Snow , and Precipitation is the cen-
0.00 (c) 1998 IEEE



troid for Snow . For simplicity this version of the ar-
chitecture requires that the user supply one and only
one centroid per query. Future additions to the archi-
tecture could resolve multiple centroids by choosing the
closest common parent centroid, or combine the results
from multiple searches.

Like other recent discovery systems, we divide the
data search process into several stages. During the
query construction stage, the user speci�es the data of
interest by entering a list of attribute-value pairs. A
resolver using the query centroids searches for referrals
to metadata holdings with relevant metadata. Meta-
data servers referenced in the referrals are queried and
the results returned to the user. The user accesses the
data via a server speci�c protocol. We now demon-
strate how the centroid hierarchy is used to constrain
a metadata query. With the partial hierarchy in Fig-
ure 3 and the query given above processing proceeds
as follows:

1. User input on the HTML search page is sent to
the user agent as an attribute-value string. The
agent packages the query string, sends it to its
pre-assigned local DSMS resolver and waits for a
response.

2. The resolver receives the query and �rst searches
its local metadata cache. If metadata exists, it is
returned to the user agent.

3. If there is no cached metadata, the resolver searches
the referral cache at its pre-assigned DSMS server.
If referrals are found the resolver will send the
original query to each of the referral sites. The
metadata results of the query are cached and re-
turned to the user agent.

4. If no referrals are found, the resolver determines
the parent centroid (Ci+1) of the current cen-
troid (Ci) from the centroid map. The resolver
searches its centroid cache for referrals for the
new centroid. If referrals are found then those
sites are sent a query for referrals on centroids
Ci; or the original metadata query if Ci is the
centroid of the original query.

5. If no referrals are found for centroid Ci+1 the
resolver checks the cache for the next higher cen-
troid. This continues until the resolver reaches
the root of the centroid map. At that point the
query can fail or access a universal referral to a
master broker.

3 Experimental Results

The success of the DSMS architecture depends on the
following issues. Within the context of a real applica-
1060-3425/98 $10
tion we must, �rst, demonstrate the advantages of the
distributed index. Here, we do not explicitly show the
centroid hierarchy is able to constrain metadata quer-
ies. The performance advantages of indexing has been
well documented in the literature. Instead we want to
show the potential improvement of distributed indices
over their centralized counterparts. Second, we must
measure the e�ects of referral & metadata caching. Fi-
nally, we must demonstrate that the architecture will
function on the scale of tens of thousands of servers.

In this section we describe the DSMS implementa-
tion and present the results of a study comparing the
DSMS distributed index performance with that of a
centralized system. The results show the DSMS model
o�ers superior performance as work load increases.

3.1 Environment

A DSMS agent, resolver and server have been imple-
mented for Sun Solaris. Unless otherwise stated the ex-
periments were performed on Sun4 CPUs running So-
laris 5.1 with 64MB of memory. Experiments were run
during o� hours on lightly loaded machines to reduce
the a�ects of competition for processor cycles. The
centroid hierarchy domain used is the Global Change
Master Directory parameters version 23 [7]. Referral
data was synthesized.

A 500 byte referral record was used for all tests.
The mSQL Beta 2.0 relational database server has been
used to implement the referral cache and centroid hi-
erarchy. The measurements are for referral lookup only
and do not include subsequent search times at the meta-
data sites. Only the query centroid is used in these
tests. Queries contain a single centroid, such as clouds,
or ozone.

As expected, preliminary results show that up to
about one million records indexing will make search
response independent of the total database size. We
use this result to simplify the experiments by using a
�xed referral database record count of 100K.

3.2 DSMS Response time

This study is intended to demonstrate that DSMS pro-
vides acceptable response in the EOS operating envi-
ronment. Results of this study will also be used as
input parameters to the modeling studies described
later in this section. Since there are no widely accepted
benchmarks for comparing discovery system response
times, our goal was to provide response times that ap-
proach the maximumI/O capabilities of the tested ma-
chines.

First, we gathered measurements of raw disk I/O
bandwidth. Our test machines were using a SCSI-2
.00 (c) 1998 IEEE
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Figure 4: DSMS Server response time as number of
results returned increases. 100K referral database.

channel so maximum I/O is 20 Mbytes per second.
Our measurements of raw disk read times are within
an order of magnitude of the maximum 20 Mbytes per
second. mSQL overhead reduces I/O to approximately
200 Kbytes per second.

These DSMS lookup experiments were designed to
measure referral lookup performance at a single DSMS
server with no load, as a function of the results size.
The main results are shown in Figure 4. Response time
in the �gure is measured between the DSMS server re-
ceiving a referral query and the time that all results are
sent. These �gures do not include run times for the
subsequent metadata server search phase. The jump
after results count 10 may be explained by increased
context switching due to transmission bu�er overow.
This explanation is supported by the fact that actual
CPU time used during the search does not display this
behavior. DSMS introduces an approximately 150 per-
cent increase in response This overhead primarily rep-
resents the time consuming task of moving results data
to I/O bu�ers. We believe this e�ect can be greatly re-
duced by optimizing the internals of the engine.

Some of the overhead arises from our use of the
mSQL engine, which we have chosen because it is freely
available with source code. Better search engines, such
as those used by the commercial search systems, would
yield better performance. Our goal here is not to pur-
sue higher query engine performance, but rather to
show that distributed indices work well.

3.3 Distributed Referral Index Con�guration

and Model

We have claimed that the distributed referral index will
scale as the query load increases. This study provides
support for that claim and demonstrates the perfor-
mance advantage of the distributed referral indices over
centralized systems. We proceed by constructing pro-
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Figure 6: No-load DSMS Response Times: 1000-byte
referral records.

totypes of the two alternative architectures. The �rst
is a centralized referral database using a single host
running a DSMS server and multiple clients running
a DSMS resolver and agent. This is similar to the
setup used to measure DSMS server responses in the
last section. The second setup is a distributed referral
index using 10 DSMS servers shown in Figure 5. OH
is the EOS domain root and contains, among 100K to-
tal, referrals to brokers with referrals for Atmospheric

Composition (CA), Atmospheric Dynamics (AZ) and
Ocean Dynamics (VA). CA, AZ & VA contain referrals
to brokers with Atmospheric Composition/Greenhouse

Gases, Atmospheric Dynamics/Winds and Ocean Dy-

namics/Pressure, respectively. NY, TX, NV, FL, RI &
UT have referrals to a subtopic of their respective par-
ent nodes in the �gure. WI represents one of a number
of test clients containing a single referral to the do-
main root. Each server has a total of 100K referrals.
The referral record size was increased to 1000 bytes to
accommodate centroid paths. The new single server
no-load response times are shown in Figure 6.

The two experiments consist of con�guring a set of
resolvers to generate a random referral query stream
with Poisson arrival rates. The stream of queries ob-
served at the server is the sum of the individual Pois-
son streams generated at each resolver. Multiple re-
solvers were required because a single resolver would
be overloaded attempting to handle the data resulting
from the queries generated. Seven arrival rates were
applied to both architectures and the server response
times measured.

In the distributed index test the query load is dis-
tributed evenly among the DSMS servers. Resolvers
randomly select one of three possible queries. The
pairs of servers under CA, AZ and VA contain re-
ferrals that satisfy one of the three queries. This ef-
fectively partitions the referral search space allowing
better parallelism. Users searching for Ocean Dynam-
0.00 (c) 1998 IEEE



OH (100K)

CA AZ VA

NY TX NV FL RI UT

(100K)

(100K)

WI

(100K)

approx. 1.1M referrals

Figure 5: Distributed referral index con�guration. Links represent referrals.
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Figure 7: Measured and Modeled Performance, 1- and
10-server con�gurations.

ics referrals do not compete with users searching for
AtmosphericComposition referrals. We have used this
con�guration for our �rst set of tests, but we are ex-
ploring the impact of other con�gurations as well.

3.4 Measured and Modeled Performance Re-

sults

We evaluated the performance of our scheme using
both experimental measurements of response times as
well as through analytical modeling to supplement the
experiments we have been conducting.

Figure 7 shows the average agent response times
for a referral query returning 100 results for the cases
of a single server, and multi-site servers, respectively.
The measurements were made at each agent as load in-
creased. Measurements included the time between the
resolver receiving a query from the agent and the time
all referrals were received. 1-SERVER RESPONSE is
the average response time measured at a client, us-
ing a centralized index architecture. The measured
values are consistent with response times observed in
the no-load experiment from the earlier study (Fig-
ure 6). 10-SERVER RESPONSE shows the average
1060-3425/98 $10
response time measured, using a distributed index con-
�guration for a referral query returning 100 results.
The lines 1-SERVER RESPONSE(MODEL) and 10-
SERVER RESPONSE(MODEL) show the results from
our analytical model for the 1-server and 10-server cases,
respectively. As the �gure shows, the model is close
enough to the measured values to be useful.

Not surprisingly, the 1-server case breaks down badly
past a query load of 1 query/second. The CPU was
incapable of handling higher loads. The distributed in-
dex begins to outperform the centralized architecture
by a large margin as the load increases past this point.
For the con�guration chosen, the cross-over point is
at a query load of just over 1 query/second. For this
same con�guration, the distributed architecture begins
to show the e�ects of saturation beyond a query load
of 5 queries/second. However, it is easy to accommo-
date heavier query loads by increasing the number of
servers used.

4 Conclusions

We have introduced DSMS, a novel prototype distribut-
ed index system. We have tested the architecture us-
ing the NASA Earth Observing System Global Change
Master Directory parameters to construct a centroid
hierarchy. DSMS has demonstrated the feasibility of
using distributed indices to manage network informa-
tion discovery. The preliminary results support our
claim that a distributed index can reduce metadata
query response time when compared to centralized sys-
tems. THE DSMS approach is applicable even when a
centralized service is appropriate and feasible. In this
case, the servers could all be located at the same site,
typically on the same local network, and the referrals
divided among the servers.

We intend to continue developing DSMS by adding
caching and re�ning the analytical model. The refer-
ral cache is likely to have a high hit rate because it
.00 (c) 1998 IEEE



is reasonable to expect EOS user interests to remain
constant with respect to a small number of topics; or
change slowly over time. So, the queries will show high
locality of reference. Modeling will allow us to investi-
gate the e�ects of scaling on the number of metadata
and DSMS server sites as well as the query load. Cur-
rently the scale of the prototype is limited by available
resources.

Finally, work is need to de�ne the characteristics of
centroid hierarchies. This would help de�ne guidelines,
perhaps a standard, for constructing domains.
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