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Abstract— Mobile sinks are already used in static sensor
networks to facilitate data collection or network management,
but it is possible in such networks for mobile sinks to be
compromised and mount various insider attacks. Some schemes
have been devised recently to limit the privileges of mobile sinks
appropriately, but these are secure only when the number of
compromised mobile sinks or sensors is below a network-wide
threshold. This threshold is determined by a sensor’s memory,
and is usually too small.

We introduce dynamic Merkle trees, and show how to use
them to restrict and verify the privilege of mobile sinks. Unlike
current schemes, our scheme allows all sensors in a region to
simultaneously verify mobile sink privileges, and does not assume
a network-wide limit on the number of node compromises.
As our security analysis shows, our approach is safe from
fabrication attacks, impersonation attacks and replay attacks.
Further, our performance analysis shows that we incur very low
communication, computation, and storage overheads.

I. INTRODUCTION

Sensor networks are widely used in applications such as
traffic and wildlife monitoring, and in battlefields. In such
networks, sensors may be deployed in large numbers and over
large areas. Researchers [23], [24], [9], [21], [25] have recently
suggested using mobile sinks (MS) within a static sensor
network to facilitate data collection or network management.
Since sensing regions may be large or far from base stations,
sending data directly to the base station will waste energy at
intermediate sensors, increase delays, and render transmitted
data liable to manipulation en-route. Similar difficulties arise
when the base station must notify remote sensors to revoke
compromised sensors or send other commands.

Mobile sinks may be used as proxies for base stations,
querying sensors or forwarding commands from the base
station. Since these represent sensitive or privileged operations,
mobile sinks are attractive targets for adversaries, who may
compromise mobile sinks to mount insider attacks. Granting
mobile sinks full privileges is hence a dangerous practice.

Zhang et al. [25] have proposed several schemes to limit
the privileges of mobile sinks to mitigate the dangers from
compromised mobile sinks. Their schemes, however, break
down completely when the number of system-wide compro-
mises of sensors and mobile sinks exceeds a threshold t. The
value t is a network-wide threshold determined by a sensor’s
memory, and can be as low as 200. This value is too low,

since sensor deployments can consist of tens of thousands of
nodes. Further, privileges must be negotiated with each sensor
separately, introducing large delays. These schemes may not
be suitable for applications requiring real-time response.

A. Our Work

In our model, mobile sinks are granted just enough privi-
leges by the base station to carry out their assigned activities,
and sensors verify privileges presented by mobile sinks before
responding to their activity requests. The base station uses one-
way hash chains to create and grant privileges to the mobile
sinks, and sensors verify these privileges by constructing
dynamic Merkle hash trees. As our security analysis shows,
our scheme is secure against fabrication attacks, imperson-
ation attacks and simple replay attacks. We also propose an
improved scheme to reduce the time window during which
adversaries may mount more complicated replay attacks. Our
schemes have the following salient features:

• Fault-tolerance: Our schemes are resilient against the
compromise of mobile sinks or regular sensors, and are
not subject to the threshold limitation in [25].

• Verification in parallel: All sensors in a region may
perform privilege verification for a mobile sink at the
same time. This eliminates the verification delay which
is inevitable in the serial schemes of [25].

• Resilience against fabrication attacks, impersonation at-
tacks and replay attacks.

• Low communication and computation overheads.
• Low storage requirement.

The rest of this paper is organized as follows. We describe
related work in Section II, and motivate our work in Sec-
tion III. In Section IV, we present our scheme, and analyze
its security and performance in Section VI and Section VII,
respectively. Section VIII concludes the paper.

II. RELATED WORK

Perrig et al. originally proposed µTESLA [17] for base
stations to broadcast authentication information. Liu et al. [12]
have proposed several multi-level µTESLA schemes to im-
prove its capabilities. These schemes provide source authen-
tication only , and can not be used to restrict the privilege of
mobile sinks if adopted directly [25]. Further, µTESLA delays



authentication, allowing adversaries to mount denial-of-service
attacks (see Section III-A).

Zhang et al. [25] first addressed the problem of handling
mobile sink compromises, and presented several designs based
on the scheme of Blundo et al. [1]. However, the schemes
in [25] work well only below a threshold. When the number
of compromised nodes exceeds this threshold, the schemes
break down completely. (See Section III-B.2.)

Our scheme uses one-way hash chains [11] and Merkle
hash trees [16]. The Merkle hash tree is widely used for
authentication [18], [6], [14]. Our schemes, in fact, construct a
set of dynamic Merkle trees, and each sensor is able to verify
the privilege of the mobile sink by independently updating the
root of the tree corresponding to its region.

A number of key pre-distribution schemes have been pro-
posed to establish a pairwise key for any pair of neighboring
sensors [7], [3], [5], [13], [4], [2], [26]. Our schemes can be
combined with such schemes to further improve the security
of the sensor network.

III. MOTIVATION

In this section, we describe two main schemes for packet
authentication: µTESLA [17] and Blundo-based Scheme [25],
analyze their drawbacks and motivate our work.

A. µTESLA & DOS attacks

The µTESLA scheme [17] authenticates messages broadcast
by the base station, and operates as follows. The base station
maintains a one-way key chain K0, . . . ,Ki,Ki+1, . . ., with
K0 being the commitment. The network lifetime is divided
into time intervals, and packets sent during interval i are all
signed with a Message Authentication Code (MAC) generated
using the key Ki. The key Ki is disclosed at the start of time
interval (i + δ), so that packets sent in any interval can only
be authenticated δ intervals later.

This delay makes µTESLA susceptible to Denial of Service
(DoS) attacks. Adversaries may use the delay of authentication
in µTESLA to send a large volume of fake packets to overflow
buffers at the receivers.

In contrast, our schemes enable sensors to verify the activity
request sent by the mobile sink immediately, and thus resilient
against DoS attacks.

B. Blundo-based Schemes & Threshold Limitation

1) Blundo-based Schemes: Zhang et al. [25] proposed
several Blundo scheme-based protocols to grant mobile sinks
the least privilege required to accomplish their activities. The
central idea of these schemes is to allow a mobile sink and
each sensor u it must work with to establish an activity-
dependent pairwise key. When the mobile sink (MS) sends the
sensor u a request, u will compute this pairwise key based on
the parameters of the specified activity, such as the ID of the
MS, the type of the transaction, and the region where activity
is to be carried out. If the sensor can successfully communicate
with the mobile sink with this activity-dependent pairwise key,

it is assumed that the MS does have the privilege to execute
the specified activity.

To establish an activity-dependent pairwise key, they use the
Blundo scheme [1] to construct their protocols. Their protocols
are constructed as follows:

• The base station chooses a random symmetric bivariate
polynomial f(x, y) of degree t.

f(x, y) =
∑

0≤i,j≤t

aijx
iyj ,

where the coefficients aij are over a finite field GF (q)
and q is a prime number large enough to accommodate
a symmetric key.

• The base station preloads each sensor u with a polyno-
mial share f(u, y), which is derived by computing f(x, y)
at x = u.

• When the base station dispatches a mobile sink to carry
out an activity Ai, it assigns the mobile sink with an
activity-dependent ID mi and then loads it with a poly-
nomial share f(mi, y), which is derived by computing
f(x, y) at x = mi.

• The mobile sink sends an activity request to sensors in the
specified region. Based on the parameters of the specified
activity, a sensor u in the specified region obtains the
activity-dependent ID mi of the mobile sink, and com-
putes the pairwise key shared with mi by evaluating mi

in its polynomial share. At the same time, the mobile sink
evaluates u in its own polynomial share. A match of the
pairwise keys f(u,mi) and f(mi, u) proves that mi has
the privilege to carry out the claimed activity.

2) Threshold Limitation: The Blundo-based schemes in-
herit the t-secure property that the system is secure only if
no more than t polynomial shares are compromised, where
t is the degree of the polynomial being used, and is a
network-wide threshold. Essentially, if nodes (mobile sinks
or regular sensors) that together hold more than t polynomial
shares collude and share their polynomials, they can discover
the bivariate polynomial f(x, y) and then compromise the
entire system. To improve the resilience of this scheme, the
base station must choose a bivariate polynomial with large t.
However, t + 1, the number of coefficients, is limited by a
regular sensor’s memory. A coefficient is typically the same
size as the key, which is 8 bytes. A Mica2 Mote sensor [20]
with 4KB SRAM can store no more than a few hundred
coefficients, so that the threshold t is limited to no more than
a few hundred. This threshold is clearly too small for a sensor
network which may be deployed with tens of thousands of
sensors.

In practice, the threshold limitation is even worse for
Blundo-based schemes. Each mobile sink is loaded with
multiple activity-dependent polynomial shares, each of which
corresponds to a valid activity. Thus an adversary may collect
more than t polynomial shares by compromising just a few
mobile sinks. Another option for adversaries to break the
threshold t is to compromise more than t tiny sensors, since



Notation Description
G 1-way hash function for generating credential chain seeds
F a 1-way hash function for generating credential chains
Cα the credential chain corresponding to activity α
Cα(p) pth hash value on credential chain Cα

Tr the time chain corresponding to region r
Tr(q) qth hash value on time chain Tr

TABLE I

OUR NOTATION

sensors have far fewer resources than mobile sinks, and are
thus more easily compromised.

Once an adversary compromises more than t polynomial
shares and discovers the bivariate polynomial f(x, y), it can
fabricate any “valid” activity such as collecting confidential
sensing data from sensors in entire detecting region, revoking
any good sensor or breaking down the entire network.

IV. OUR SCHEME: PRELIMINARIES

In this paper, we focus on how to grant and verify privileges
for mobile sinks to perform transactions. Revoking the priv-
ileges of compromised mobile sinks is an orthogonal issue,
which has been considered in [25].

A. Assumptions

We assume that sensors have resource limitations typical of
the current generation of sensors, such as MICA2 motes [20].
They have only 4KB of SRAM, so we assume that they can
store a few hundred keys. The mobile sinks may either be
resource-rich class devices, or be resource-limited sensors as
in [19], [15]. We also assume that once a sensor or a mobile
sink is compromised, all keys stored at it can be accessed by
attackers. Further, compromised sensors or mobile sinks are
assumed to be able to collude in mounting attacks in various
forms. The base station, on the other hand, has sufficient
resources to protect itself against compromise.

We make the standard assumption [25] that the monitoring
area is divided into regions. Each sensor knows its region [22],
but may not know its exact location. Further, as in [17], [14],
we assume that clocks on sensors are loosely synchronized.
We use the notation in Table I.

B. Definitions and Problem Setup

We use the term transaction for the actions that a mobile
sink may carry out in a sensor region, such as data collection,
network management, the relaying of commands, and so on.
Let M be the set of mobile sinks, T be the set of transaction
types, and R be the set of sensor regions.

Definition 1: An activity is a triple 〈ms, tt, r〉, where ms ∈
M , tt ∈ T and r ∈ R. It specifies that ms will carry out a
transaction of type tt in region r.

We will refer to an activity either by listing the elements
of its tuple, or as we will often find convenient, by using the
activity identifier α = H(ms, tt, r), where H is a collision-
resistant hash function. We refer to the components of the
activity tuple as α.ms, α.tt and α.r, respectively.

Definition 2: An credential chain Cα corresponding to an
activity α is a one-way hash chain whose elements are derived

from the activity identifier α (see Section IV-D). The value
Cα(k) is the kth value on this chain.

C. Overview

The base station grants mobile sink α.ms a credential
allowing it to execute transaction α.tt in region α.r by loading
it with the next available hash value Cα(p) on Cα. The base
station then dispatches α.ms to the region α.r.

Upon arrival in region α.r, the sink α.ms presents credential
Cα(p) and attempts to execute transaction α.tt. Sensors in
region α.r are required to assist α.ms in the transaction α.tt. A
sensor acknowledges the right of α.ms to execute transaction
α.tt upon verifying Cα(p) to be the next available value on
Cα.

If the activity α is to be executed several times, we require
α.ms to present a fresh credential corresponding to each
execution of α. Consequently, a compromised mobile sink
α.ms can not reuse old credentials to claim fresh privileges.

Credential freshness is verified as follows. For each region
r ∈ R, the base station first identifies all activities α such
that α.r = r. It then constructs a Merkle hash tree over the
commitments for all credential chains Cα. The root of the
Merkle hash tree is loaded into all sensors in region r. We
show in Section V how all sensors in region r can verify
credential freshness using this root. Unlike uses of Merkle hash
trees [6], [14], we must construct Merkle trees dynamically.

D. Credential Chain Generation

Let KM be a master key known only to the base station
and G be a collision-resistant one-way hash function. For each
activity α = 〈ms, tt, r〉, the base station first computes a hash
chain seed Cα(n) = G(KM , α). Next, it uses another one-
way hash function F to create a credential chain, which is a
one-way hash chain Cα = Cα(0), Cα(1), · · · , Cα(n)

Cα(j) = F(Cα(j + 1)), j = n − 1, · · · , 1, 0. (1)

To save memory, the base station may choose to store parts
of this chain, although it is typically assumed that the base
station has ample storage. For example, it may only store every
kth hash value, and derive the rest using the function F . This
is a trade-off between memory and computation.

The values in this chain are used in the order
Cα(1), Cα(2), · · · , Cα(n). The value Cα(0) is the commit-
ment for the hash chain, and is made public. A sensor can now
verify that any value Cα(k) belongs to chain Cα by checking
whether Cα(0) = Fk(Cα(k)).

E. Issues in Validating Credentials

When α.ms arrives at the region α.r, it presents credential
Cα(p) to all the sensors in α.r. Each sensor must now verify
whether Cα(p) is a fresh hash value from the chain Cα.
The sensor proceeds by verifying first, that Cα(p) belongs to
credential chain Cα, and second, that Cα(p) is the next fresh
value from Cα.

The first step would be easy if the commitments Cα(0)
and the numbers of hash values disclosed from all chains



Cα were stored at the sensor. However, sensor memory is
limited, and there may be a very large set of activities, so
this is unrealistic. Many mobile sinks may perform the same
function. The number of activities m is the product of the
number of transaction types and the number of mobile sinks,
so with ten transaction types and a hundred mobile sinks, we
have a thousand commitments. Sensors would need around
8KB to hold these commitments, which are typically the same
size as keys (8 bytes). Current sensors, such as the Mica2
Mote [20] have only about 4KB SRAM.

V. DYNAMIC CREDENTIAL TREES

We propose a novel approach for credential validation by
defining a dynamic variant of static Merkle trees [16]. For each
region r ∈ R, the base station first identifies all activities αi

such that αi.r = r. Then it creates a Merkle tree with leaves
corresponding to the αi as follows.

Ni, the leaf node corresponding to activity αi, is loaded
with a value obtained by hashing the identifier αi and the
commitment Cαi

(0) for the chain Cαi
. A Merkle tree is now

constructed bottom-up in the usual fashion. We denote the leaf
node corresponding to αi by Ni, and the value that Ni holds
by N̂i.

These Merkle trees are maintained dynamically by the base
station, and are referred to as Dynamic Credential Trees (DC-
trees). We will show how a sensor in region r can check
whether Cαi

(p) appears on credential chain Cαi
using only

the value at the root of the DC-tree. We also show how each
sensor can independently update its DC-tree root value after
verifying a credential.

1) Initialization: A DC-tree may have up to m = |M |×|T |
leaf nodes, where |M | is the number of mobile sinks, and |T |
is the number of transaction types. Leaf node Ni in the DC-tree
is initially given the contents N̂i = H(Cαi

(0), αi). Figure 1
shows a DC-tree with 8 leaf nodes.

After sensor deployment, the base station will broadcast the
roots of all the DC-trees using µTESLA [17]. Each sensor
stores the root of the DC-tree corresponding to its region.
Over time, as mobile sinks visit a region r, they will present
successive values from their respective credential chains.

Definition 3: The index of a credential chain is the number
of hash values, excluding the commitment, that have been
disclosed from it.

Definition 4: A DC-tree has configuration κ = s1, . . . , sm

if the index of the credential chain Cαi
is si.

After initialization, the index of each credential chain Cαi

is 0, and the DC-tree’s initial configuration κ = 0, 0, . . . , 0.
2) Credential Authentication: Let the DC-tree τr for region

r have configuration κ(τr) = s1, . . . , si, . . . , sm, and let τr’s
root value be ρ. Let Cαi

(si + 1) be a new credential.
For each credential Cαi

(si +1), a mobile sink also presents
a proof P(Ni), which it gets from the base station. This proof
comprises all the hash values in τr for the siblings of the nodes
on the path from Ni to the root. For example, in Figure 1,
{N̂5, N̂78, N̂14} is the proof for a credential on Cα6 .

N N N N N N

N N

NN

N

N 12 34 56
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1 2 3 4 5 6N 7 8N

78N

14 58

Fig. 1. The initial DC-tree constructed with commitments for 8 credential
chains. The values at N6 and N56 are H(Cα6 (0), α6) and H(N̂5, N̂6),
respectively. The proof P(N6) = {N̂5, N̂78, N̂14}.

A sensor verifies Cαi
(si + 1) indirectly by verifying that

the previous value Cαi
(si) on Cα was used in computing ρ,

the current root value. It can obtain Cαi
(si) from Equation 1,

compute the contents N̂i of Ni, and verify that this value leads
to value ρ under the proof P(Ni).

When mobile sink αi.ms moves to region αi.r, it broadcasts
a request of the form (αi.ms, αi.tt, αi.r, Cαi

(si + 1),P(Ni)).
Upon receiving this request, a sensor u verifies whether
Cαi

(si +1) is the next available value on the credential chain
Cαi

in the following steps:
1) Compute activity identifier αi = H(αi.ms, αi.tt, αi.r).
2) Compute N̂i = H(F(Cαi

(si + 1)), αi), and a predicted
root value ρ′ using the proof P(Ni).

3) If the actual root value at u is ρ, and ρ′ = ρ, then
Cαi

(si+1) is validated, and sensor u will assist αi.ms in
transaction αi.tt. Otherwise, u will generate a report of
mobile sink compromise and send it to the base station.

In Figure 1, let a mobile sink wish to carry out activity
α6. It broadcasts a request which includes α6, Cα6(1), and
the proof {N̂5, N̂78, N̂14}. Each sensor within region α6.r
computes N̂6 = H(F(Cα6(1)), α6), N̂56 = H(N̂5, N̂6), then
N̂58 = H(N̂56, N̂78), and finally ρ′ = H(N̂14, N̂58). The
sensor accepts the credential if ρ′ = ρ, the current root value
held at the sensor.

To ensure confidentiality, our scheme requires sensors in
region αi.r to encrypt responses with pairwise keys shared
with the mobile sink. A large literature exists on pairwise key
establishment [7], [3], [5], [13], [4], [2], [26].

3) DC-Tree Updating: If credential validation succeeds,
each sensor updates the root value ρ it holds using the newly
received credential and the corresponding proof, so that it can
verify the next credential to be received. After Cαi

(si + 1) is
verified, each sensor u obtains N̂i = H(Cαi

(si + 1), αi), and
then computes the new root using P(Ni). This new root value
will be used by u for the verification in the future.

In Figure 2, suppose Cα6(1) has just been verified. All sen-
sors in the region will compute the new root by first computing
N̂6 = H(Cα6(1), α6), and regenerating the other nodes as in
the example above. At the same time, the base station will
update the DC-tree, updating the nodes {N6, N56, N58, N18}.

In our scheme each sensor computes and holds only the root
value of the updated DC-tree, while the base station updates
and maintains the DC-tree. Figure 2 shows how the values at
N6, N56, N58, and the root are updated.
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Fig. 2. DC-tree updating. An activity request of α6 with Cα6 (1) and proof {N̂5, N̂78, N̂14} has been verified, and then the nodes {N̂6, N̂56, N̂58, N̂18}
have been updated. Each sensor only maintains the updated root value N̂18. The entire DC-tree is updated and maintained by the base station.

Liu et al. [14] also propose to use Merkle hash tree
to distribute and authenticate the commitments of one-way
hash chains. However, they use static Merkle trees, and can
support only one-time verification of commitments, but not
any further credentials disclosed over time. In contrast, our
DC-tree scheme allows sensors to verify credentials over time.
To the best of our knowledge, the DC-tree is the first dynamic
Merkle hash tree structure.

4) Some Additional Issues: We have chosen not to include
the transaction time in the definition of activity, since including
the time would greatly increase the number of activities m.
The DC-tree also has m leaves, so the size log m of proofs
would also increase correspondingly, significantly increasing
the communication overhead. If time were divided into 10-
minute segments, we would have 144 intervals per day, and
the size of a proof would increase by 8�log2 144� = 64 bytes.
Since sensors typically use short-length messages (29-byte
payload in TinyOS [20]), this would significantly increase the
communication overhead, which is a dominant source of power
consumption for sensors. Instead, we choose to assign a new
credential for each execution of a same activity.

Problems can arise since sensor networks are prone to
packet loss. If a sensor misses a credential or a proof, it will
be unable to update the stored root of the DC-tree, and will be
unable to verify future credentials. We address this problem by
assuming that at most t successive requests can be lost. The
base station loads the mobile sink with t previous credentials
and proofs. When a sensor is unable to verify a credential due
to packet loss, the mobile sink can make the earlier credentials
and proofs available to this sensor.

A proof for a Merkle tree with m leaves includes log m
hash values, each of which is typically 8 bytes. These values
may be transmitted in multiple packets since sensor networks
use small packets. Since a sensor must receive all packets
transmitted before verification, an adversary may mount DoS
attacks by sending fake hash values. We adopt the scheme
in [10] to securely transmit the proof, so that each packet of
proof can be verified immediately, preventing DoS attacks.
Due to page limits, we refer readers to [10] for details.

VI. SECURITY ANALYSIS

We now show that our scheme is secure against fabrication
attacks, impersonation attacks and simple replay attacks. We
propose an improved scheme in Section VI-C.1, reducing
the time window during which adversaries may mount more
complicated replay attacks.

A. Credential Fabrication Attacks

A credential is legitimate only if it is a fresh hash value
on the proper credential chain. The one-way property of
credential chains ensures that neither adversaries nor compro-
mised mobile sinks can derive the next available hash value
on the credential chain. An adversary can not fabricate a
credential chain using intercepted information. The credential
chain corresponding to activity 〈α.ms, α.tt, α.r〉 uses a seed
which is generated as G(KM , α). Since the value KM is
known only to the base station, the adversary can not generate
this seed. The one-way property of our hash functions also
prevents the adversary from fabricating a credential and proof
combination that yields the correct value for the DC-tree root.

B. Impersonation Attacks

Adversaries or compromised mobile sinks can not imper-
sonate a good mobile sink to collect feedback from sensors.
Messages sent by sensors to mobile sinks are encrypted by
pairwise keys, which can be generated using the schemes
in [7], [3], [5], [13], [4], [2], [26].

C. Replay Attacks

Our scheme is safe from simple replay attack, in which
a valid activity request is maliciously repeated by a com-
promised mobile sink. A fresh credential must be presented
for each execution of an activity. If a compromised mobile
sink replays some credential Cα(p), sensors will use Cα(p)
to compute the DC-tree root ρ′. This computed root value
will not match the root value ρ stored, since ρ has already
incorporated Cα(p) at some earlier time. Therefore, the replay
will be detected and discarded by sensors.

However, replay attacks may take other forms, for many of
which there is no defense [8]. For example, a compromised
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Fig. 3. ms1 is dispatched to carry out activity α at time window Ij , and
ms2 is dispatched to carry out activity β at time window Ij+1. Compromised
mobile sink ms1 can replay the activity request of α only during the time
window Ij .

mobile sink may send a transaction request and a valid
credential only to a subset of sensors in a specified region,
and later resend this same message to the other sensors at a
later time. Since these other sensors have not already seen this
credential, validation succeeds.

1) Defending Against Replay Attacks: We show how to
reduce the window of vulnerability in which a compromised
mobile sink may mount complex replay attacks. To this end,
we define time windows I1, I2, · · · , Ik, covering an appropri-
ate duration into the future. The actual number and size of time
windows depends on the application security requirements and
the accuracy of loose time synchronization. The base station
generates a one-way hash chain Tr = Tr(0), Tr(1), · · · , Tr(η)
for each region r ∈ R, and uses a hash value Tr(j) on this
chain to “timestamp” all activity request dispatched during
time window Ij . We refer to these one-way hash chains as
time chains.

During the initialization, the base station securely broadcasts
the commitments Tr(0) for all time chains (and the DC-tree
roots) using µTESLA. Each sensor stores the commitment and
the root corresponding to its region. In our new approach, a
content N̂i of the DC-tree corresponding to an activity αi is
initialized to be

N̂i = H(Cαi
(0), αi, Tr(0)).

Now let si hash values on the credential chain Cαi
have been

disclosed, and let the latest execution of αi have been in
the time window Ij . In our new scheme, N̂i will have been
updated to

N̂i = H(Cαi
(si), αi, Tr(j)).

Since the DC-tree node contents incorporate these timestamps,
all proofs generated by the base station corresponding to Ni

will also incorporate the timestamps, as we describe below.
When the base station dispatches a mobile sink to region

αi.r during time window Ij , it provides it with the credential
Cαi

(si+1), Tr(j), and proof P(Ni, Tr(j−1)). Upon receiving
a request from a mobile sink, a sensor in αi.r will first verify
Tr(j) to be the jth hash value on the time chain Tr, using
the commitment for Tr. Next, it computes the content of leaf
node N̂i as

N̂i = H(Cαi
(si), αi, Tr(j − 1)),

after deriving Cαi
(si) and Tr(j − 1) from Cαi

(si + 1) and
Tr(j), respectively. Finally, as in Section IV-E, the sensor com-
putes the DC-tree root using N̂i and the proof P(Ni, Tr(j−1))
and checks if they match.

Now consider the complex replay attacks we have described
earlier. In Figure 3, activities α and β are to be executed during
time windows Ij and Ij+1, respectively. Suppose the mobile
sink α.ms is compromised and wants to replay an activity
request of α during the time window Ij+1. Under our new
scheme, this replay attack is not feasible. First, if α.ms tries to
use the credential for α and the hash value Tr(j), a sensor will
reject this request, since it is expecting the (j+1)th hash value
Tr(j+1). Second, let us assume α.ms eavesdrops and picks up
Tr(j +1) when the request for activity β is transmitted. Now,
α.ms has the proof for H(Cαi

(si), αi, Tr(j−1)) but does not
have the proof for H(Cαi

(si), αi, Tr(j)). Therefore, it can not
replay the activity request using Cαi

(si) and Tr(j + 1).

VII. PERFORMANCE ANALYSIS

We show that our schemes are efficient in terms of compu-
tation, communication, and storage overhead.

A. Computation Overhead

To verify a credential in the basic scheme described in
Section IV, a sensor must perform a hash operation to compute
the activity identifier α, and another hash operation to compute
the current contents of leaf node in the DC-tree corresponding
to α. Finally, it performs log m hash operations to compute
the root of the DC-tree using the proof. If the verification
succeeds, the sensor performs log m hash operations to update
the root of the DC-tree. Therefore, the total computation
overhead is 2(log m + 1) hash operations.

In the improved scheme in Section VI-C.1, a sensor first
performs one hash operation to validate the time chain value.
If the request is a replay, it is rejected, and the computation
overhead remains at one hash operation. Otherwise, the sensor
will perform 2(log m + 1) hash operations as in the basic
scheme. Thus the total computation overhead is (2 log m + 3)
hash operations.

B. Communication Overhead

In our basic scheme, the mobile sink needs only to send
a request that includes the values α.ms, α.tt, α.r, an 8-byte
hash value Cα(p), and a proof with log m hash values. For
a sensor network with 100 mobile sinks and 10 transaction
types, m = 1, 000 and log m = 10. In the improved scheme
in Section VI-C.1 for preventing complicated replay attacks,
the request also includes an 8-byte hash value Tr(j) beyond
the request in the basic scheme.

In contrast, the communication overhead of the Blundo-
based scheme in [25] includes the activity description, log(nb)
hash values, and two mutual authentication packets which
include two 8-byte nonces and two 8-byte MACs per sensor
in the specified region, where nb is the number of blocks the
mobile sinks traveled [25]. Thus the communication overhead
for activity verification is 8 log(nb) + 8× 4×nr bytes, where
nr is the number of sensors per region. Figure 4 compares the
communication overhead for activity verification, excluding
the overhead of transmitting the activity elements. With a
typical configuration of nb = 256 [25], m = 1, 000, the
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communication overheads for activity verification of our basic
scheme and improved scheme are 88 bytes and 96 bytes,
respectively, while that of the Blundo-based scheme is 2, 624
bytes, where the number of sensors per region is nr = 80.

C. Storage Requirement

In our basic scheme, each sensor only needs to store the
root of the DC-tree for the region where it is located. Thus
the storage requirement is only 8 bytes. In our scheme with
timestamps, each sensor must also store the commitment for
the time chain, which is 8 bytes.

In contrast, each sensor in the Blundo-based scheme in [25]
must store (t + 1) coefficients, where t is the degree of the
polynomial. The size of each coefficient is 8 bytes, and thus
t is no more than 500 as the SRAM for a Mica2 Mote sensor
is only 4KB.

Figure 5 compares the storage requirement of the Blundo-
based scheme and our two schemes. Our basic scheme and im-
proved scheme only require 8 bytes and 16 bytes, respectively,
while the storage requirement of the Blundo-based scheme is
proportional to the number of coefficients.

VIII. CONCLUSION

In this paper, we propose a resilient scheme to restrict and
verify the privileges of mobile sinks, using one-way hash
chains and by constructing dynamic credential trees. We have
shown how to overcome the threshold limitations of existing
schemes in terms of the number of mobile sink compromises
allowed. Further, unlike the work in [25], our method allows
all sensors in a region to verify the privilege of mobile sinks at
the same time, making it suitable for applications that require
real-time response. Our security and performance analysis
show that our methods are secure and efficient.
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